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Abstract

We investigate different decision criteria for treating climate targets in a

setting of uncertainty and learning. Developed as an implementation of

strong sustainability, climate targets have been traditionally understood

as maximum acceptable limits of global warming. Reflecting this idea

in decision criteria for the climate problem implies using a lexicographic

structure: Meeting the climate target should be the primary criterion,

while reducing mitigation cost is secondary. The structure can be pre-

served under climate-related uncertainty by formulating probabilistic cli-

mate targets. Yet, extending this position to a situation of future learning

may give rise to normatively unappealing effects as a probabilistic cost-

effectiveness analysis deviates from expected utility theory. We point to

these effects by discussing the relevance of the von Neumann-Morgenstern

axioms in the context of the climate problem. Instead of cost-effectiveness

analysis, cost-risk analysis can be used which is an expected utility cri-

terion based on a risk measure of overshooting the climate target. We

discuss the features of this criterion against the background of strong sus-

tainability. Finally, we explore a third target-based decision criterion that

minimizes the target overshoot for a given budget of mitigation cost.



Nomenclature

BAU Business-as-usual (baseline scenario without emission reduction)

CBA Cost-benefit analysis

CEA Probabilistic cost-effectiveness analysis

CRA Cost-risk analysis

IAM Integrated assessment model

MIND Model of Investment and technological Development

Mitigation Mitigation of climate change (emission reduction)

MRA Minimum Risk Analysis

Posterior After learning

Prior Before learning

Temperature Global mean surface temperature relative to preindustrial times
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0. Introduction

Introduction

Imagine the international community follows the Paris climate agreement of

2015 and sets off to hold global temperature increase to “well below 2◦C” (UN-

FCCC, 2015). Every nation strictly keeps to its plan for meeting this common

climate target. Now, suppose by 2030 climate scientists discover that climate

change is much stronger than expected. The envisaged amount of greenhouse

gas emissions cause considerably more warming than 2◦C. How should climate

policy react? Should decision makers take more action to reduce greenhouse

gas emissions? If so, how much more? Should they still aim at a 2◦C tar-

get? No matter how we respond to any of these questions, as in the future

we may have more knowledge about the climate system, such situations should

be consistently anticipated in today’s decision making. This study will investi-

gate different approaches for taking this prospect of future learning into account.

Different decision criteria have been developed in climate economic modeling to

derive policy recommendations with respect to climate targets. Edenhofer et al.

(2005) introduced cost-effectiveness analysis for investigating optimal mitiga-

tion policies to reach climate targets. It is the standard approach used in the

IPCC (2014b, pp. 413-510) to address numerous questions on economic trans-

formation pathways for climate stabilization. Held et al. (2009) extended the

approach to take relevant uncertainty in the climate and the economic system

into account. Finally, Schmidt et al. (2011) developed cost-risk analysis, a crite-

rion which can consistently deal with future learning about the climate system.

Neubersch et al. (2014) applied this decision criterion to perfect learning about

climate sensitivity in the model MIND-L and derived necessary conditions for

the convexity of the risk function employed.

This study asks how to consistently formulate target-based criteria to make de-

cisions on the climate problem under learning. In fact, considerable parts can

be seen as a review of Schmidt et al. (2009) and Schmidt et al. (2011) who laid

the foundations to this discussion. Our study revisits the problem, discussing it

against the normative background of strong sustainability: Traditionally, strong

sustainability implies using a lexicographic structure of decision criteria: Meet-

ing the climate target should be the primary criterion, while reducing mitigation

cost is secondary. Yet, extending this position to a situation of future learning

may imply breaking with expected utility theory, the standard framework of
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0. Introduction

decision making under uncertainty. This is why we will discuss the relevance of

the von Neumann-Morgenstern axioms of expected utility theory in the context

of the climate problem. We aim to answer the following question:

How can strong sustainability be formalized in a consistent decision criterion for

the climate problem under uncertainty and future learning about climate sensi-

tivity?

Let us specify the role that we wish to take as decision analysts when dis-

cussing different criteria against the normative background of strong sustain-

ability. Keeney (1982) conceives decision analysis as a dialog between a decision

maker and a decision analyst: Dealing with simple decision problems, the deci-

sion maker can normally rely on her intuition. However, suppose the problem

is sufficiently complex, the decision maker could fail to see the full implications

of her choice. Here, the decision analyst comes in by formalizing the choice and

detecting possible inconsistencies to let her reconsider the decision. The goal of

the procedure is to elucidate the decision problem and find the best option for

the decision maker.

Value-free decision analysis is neither possible nor desirable, as Keeney (1982)

emphasizes. First, Sen (1993) famously argued that “internal consistency” with-

out reference to motivations or principles outside of decision theory does not

exist. Consistency principles, no matter how natural they may appear, require

normative discussion and justification against the background of the specific de-

cision problem. Second, “decision analysts try to formalize the thinking and the

feelings that the decision maker wishes to use on the problem” (Keeney, 1982,

p. 819). This clearly requires acts of translation and interpretation. It is not

a deficiency, rather a necessity when engaging in the aspired dialog. Decision

analysis aims at clarifying the thought process in decision making as to make it

accessible to review and adjustment.

We will structure our considerations as follows: Chapter 1 presents the climate

problem and the role of climate targets according to strong sustainability. It

explains the complexities raised by uncertainty and learning and introduces the

two existing decision criteria. Chapter 2 presents formal concepts of decision

theory and presents the expected utility framework, the standard approach used

in decision making under uncertainty. Subsequently, chapters 3 and 4 will ana-
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0. Introduction

lyze the two existing target-based decision criteria under learning: probabilistic

cost-effectiveness and cost-risk analysis. Finally, chapter 5 introduces minimum-

risk analysis as a new target-based decision criterion and gives a brief outlook

on its possible chances and problems. Chapters 3 to 5 respectively address the

question, under which condition the investigated criterion can be seen as an

adequate formalizations of strong sustainability under learning.

3



1. The Decision Problem: Meeting Climate Targets under Uncertainty

1 The Decision Problem: Meeting Climate Tar-

gets under Uncertainty

The broad framing of this first chapter may be justified by providing a back-

ground that helps to understand the key normative perspective this study deals

with. The climate problem raises the complex question of how the manifold risks

of climate change can be related to the economic cost of emission reduction (sec-

tion 1.1). There are two major normative framings to generally approach this

question: the cost-benefit approach and the climate target approach. The first

assesses monetized climate damages to be traded-off against mitigation cost

(section 1.2), while the second works with maximum acceptable limits of global

warming (section 1.3). How this target-based framing can be formalized in a

decision criterion under uncertainty and learning will be the question tackled

by this study (section 1.4). So far, two criteria have been suggested: Probabilis-

tic cost-effectiveness analysis and cost-risk analysis (section 1.5). They will be

discussed in more detail in chapters 3 and 4.

1.1 The Climate Problem

The climate problem is a dilemma of modern economic development. On the

one hand, to seriously cut emissions, a costly and technologically demanding

transformation of the energy system, the backbone of modern industrialized

economies, would be necessary. The fossil-fuel sector would need to be replaced

by hitherto more expensive and less stable low-carbon energy sources. On the

other hand, depending on the amount of emissions, climate change may pose

very severe threats to human societies and natural ecosystems. The list of po-

tential adverse impacts compiled by the IPCC (2014a) is long and alarming.

The key question is how much greenhouse gases should still be emitted in the

face of climate change. Without a doubt, the weights to be balanced for this

question are huge.

Integrated Assessment Models (IAMs) can help to guide decision making on the

climate problem by analyzing emission scenarios from a social planer perspec-

tive (IPCC, 2014b, pp. 178-181). The models simulate interactions between

the economic system, the energy system and the climate system. Not only do

they allow for estimating the negative effect of emission reductions on macroeco-

nomic growth, i.e. the mitigation cost of climate change. They also run climate

4



1.1. The Climate Problem

and impact simulations to determine and assess the climate impacts caused by

emissions. There are various comprehensive IAMs such as DICE1, FUND2 or

REMIND3, some of which aim to cover a broad range of aspects such as energy

markets, crop technologies, climate-induced sea-level rise or extreme weather.

In this study, we will focus on the decision analysis which can be done with

IAMs. Different decision criteria have been suggested to deal with the climate

problem. In the most general sense, they all weigh some assessment of cli-

mate impacts against mitigation cost. Obviously, given the vast empirical as

well as normative complexities of the problem, it is not surprising that already

the meta-decision on an adequate decision criterion is difficult and highly con-

tentious. Any approach sets the multi-faceted climate problem into a particular

normative framing. The two major framings are the cost-benefit framing (sec-

tion 1.2) and the climate target framing (section 1.3). As decision analysts, we

will not focus on justifying either of them. Rather, we will investigate more for-

mally how the target-based framing can be adequately formalized in a decision

criterion under uncertainty and learning.

The climate problem is in many ways an exceptional decision problem. Let us

point to some of its complexities more specifically:

First, there are numerous uncertainties when using IAMs for estimating the eco-

nomic or environmental implications of emission reductions. They are partly as

large that some authors question the usefulness of IAMs in general (Pindyck,

2013). Second, climate change affects human societies in manifold and poten-

tially existential ways such that even if impacts could be well predicted, it would

be ethically far from clear how to assess and compare them (e.g. Ackerman et al.,

2009).

Third, the climate problem is an intergenerational problem. Most of the people

affected are not yet born, which raises fundamental questions about the nature

of their rights and the duties of present generations (IPCC, 2014b, pp. 216-220,

223-224). Furthermore, the mitigation cost generally occur decades earlier than

the associated benefits of mitigation, i.e. the avoided climate impacts. The main

1e.g. Nordhaus (2013)
2e.g. Tol (2013), www.fund-model.org
3e.g. Luderer et al. (2013)
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1.2. The Cost Benefit Approach

reason is that the warming response to greenhouse gas emissions is delayed by

the ocean heat uptake which is slow in comparison to land. The oceans receive

more than 90% of the additional energy input to the Earth system and need

decades for restoring radiative balance with greenhouse forcing as to reach equi-

librium temperature (IPCC, 2013a, pp. 264-265).

Fourth, this time delay allows to continuously re-evaluate the decisions on emis-

sion policy. The mentioned uncertainties may be reduced by additional climate

observations or advances in the scientific understanding of physical processes.

This knowledge will be used to update IAMs in the future. Adapting our choices

consistently to new information will be referred to as decision making under

learning and is the focus of this study.

In the next two sections, we will present the two major normative framings

to approach decision making on the climate problem. The first is the cost-

benefit framing, the standard approach in environmental economics. The second

framing works with climate targets to be understood as maximum acceptable

limits to climate change.

1.2 The Cost Benefit Approach

The climate problem confronts us with a trade-off between mitigation cost and

climate impacts. Cost-benefit analysis (CBA) tackles the problem in the most

straightforward manner: It weighs the cost of mitigation against aggregated

economic damages from all kinds of climate impacts in monetary terms.

CBA represents the standard economic approach to deal with environmental

problems by internalizing unconsidered externalities into a welfare optimization.

Marginal damage functions of environmental harm are assessed and balanced

with the marginal cost of emission abatement (see e.g. Perman et al., 1996, pp.

204-208). As the “the mother of all externalities”4, climate change can be tack-

led accordingly.

4In the words of Richard Tol (Tol, 2009, p. 29).
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1.2. The Cost Benefit Approach

CBA conducts the following optimization:

MinE

∫
(C(E) +D(E))e−ρtdt. (1)

Here, E = E(t) denotes the pathway of global greenhouse gas emissions over

time, C(E) the total mitigation cost and D(E) the total damages induced by

climate change5. In general, we refer to these quantities as functions over time,

although for notational convenience we omit writing the time dependence ex-

plicitly. The mitigation cost are the welfare losses relative to a business-as-usual

(BAU) scenario, i.e. a future growth scenario in which climate impacts are ig-

nored and emissions continue to grow efficiently. The climate damages represent

the total market and non-market impacts of climate change in terms of welfare.

Climate consequences are modeled explicitly and internalized into the social

planer analysis. CBA then seeks to find the optimal level of climate change

mitigation.

As is common for intertemporal optimization, the objective function is dis-

counted by the factor e−ρt and aggregated over time, where ρ is rate of pure

time preference. It is a measure of how much future welfare is devalued relative

to present welfare. The discount factor significantly influences the optimum as

mitigation cost occur generally earlier than climate damages. A value of ρ = 0

implies that the welfare at any future point in time is equally valued as the

present welfare. The proper way of discounting has been subject to extensive

ethical debates (see Davidson, 2015). The sensitivity of the results to this con-

tentious parameter is one of multiple problems CBA faces.

Cost-benefit analyses of the climate problem have been conducted with several

IAMs. Many of the results indicate that the economic benefits of emissions out-

weigh the climate damages up to a considerable warming of several degrees in

global mean temperature above preindustrial times6: In the version of Nordhaus

(2008), the DICE model suggests an optimal temperature of 3.5◦C by the end of

5Throughout this study, climate damages and mitigation cost will be considered as aggre-
gated quantities. Questions of interpersonal comparisons, distribution and adequate welfare
measures are not treated here. We refer the interested reader to Adler and Treich (2015) or
the IPCC (2014b, pp. 221-223).

6The preindustrial time as defined by the (IPCC, 2013b, p. 1264) refers somewhat roughly
to the period before 1750 i.e. before significant anthropogenic greenhouse gas emissions oc-
curred.
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1.2. The Cost Benefit Approach

the 22th century (pp. 82-83)7. The MERGE model used by Manne and Richels

(2005) recommends a pathway of around 3◦C warming by 2150 similar to the

optimum found by the PAGE model of Hope (2008) for a best-estimate scenario.

However, many critics consider a temperature rise of this scale temperature rise

to be unreasonably high, as can be seen in the discourse on the 2◦C target (see

Jaeger and Jaeger, 2011). The focal point of the CBA criticism is the construc-

tion of a damage function that is to be traded-off against mitigation cost. Three

lines of argument have been brought forward.

First, there is fundamental uncertainty about the specific impacts associated

with a climate change of this magnitude (Charlesworth and Okereke, 2010). A

damage function, it is argued, needs to assume a degree of climate predictability

which cannot be reached for such a complex system featuring non-linear feed-

back mechanisms and tipping points. Uncertainties about this system are partly

irreducible and can often not even be represented by probability distributions.

Second, CBA comes with precise valuations of all possible kinds of climate

damages, a practice which must necessarily rely on many ethically contestable

methods and assumptions (Ackerman et al., 2009). It needs to monetize, for

instance, the value of life, health, cultural heritages and biodiversity. Obviously,

many of these values at stake seem “incomparable” (IPCC, 2014b, p. 220). Yet,

CBA must set explicit trade-off parameters to integrate each of them. It forces

detailed quantitative balancing where, in general, qualitative reasoning might

be more adequate.

Third, also the question of compensatory justice points to the limits of economic

assessment of climate change (IPCC, 2014b, p. 224). Reasoning on the basis of

trade-offs implies that compensation of future generations is generally accept-

able for any sort of climate damages. However, it has been brought forward

that climate change leads to infringements of future people’s (human) rights,

which could be avoided, so the argument goes, at comparatively reasonable cost

(Caney, 2008). The cost-benefit framing has difficulties to integrate such rights-

based ethical reasoning.

7Nordhaus (2013) obtains an optimum of 2.3◦C maximum temperature in a more recent
version of DICE and for zero discounting (pp. 207-208).
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1.3. Climate Targets

1.3 Climate Targets

The second framing to deal with the climate problem is based on climate tar-

gets. It features prominently in the international climate policy discourse. The

recent 21st Conference of the Parties formulated the objective of “holding the

increase in global average temperature to well below 2◦C above preindustrial

levels” (UNFCCC, 2015). Such climate targets are generally not justified by

detailed impact analysis but by more qualitative arguments. The target-based

framing evades the main criticism of CBA as there is no damage function and

diverse ethical aspects such as the role of rights or precaution in the light of

fundamental uncertainty may feature the justification of the climate target. It

externalizes the evaluation of climate change to political discourse and leaves

economic analysis with cost-effectiveness questions of reaching exogenous tar-

gets.

The question arises of how strict such a target needs to be understood. Although

other interpretations are possible8, we consider the interpretation promoted by

the influential German Advisory Council of Global Change (WBGU). It is the

very institution which introduced the 2◦C target to the policy debate and shaped

major arguments (see Jaeger and Jaeger, 2011). The WBGU (2014) speaks of

“planetary guard rails” to be understood as

“damage thresholds whose transgression either today or in future

would have such intolerable consequences that even large-scale ben-

efits in other areas could not compensate these.” (p. 11)

The WBGU endorses a strict interpretation. They claim that holding global

temperature below the guard rail should be the primary concern, while miti-

gation cost are secondary. They reject any trade-off between the “intolerable

consequences” and mitigation cost. The guard rail is a maximum acceptable

limit.

The idea of maximum acceptable limits is known in the sustainability discourse

as strong sustainability. The positions of weak and strong sustainability dif-

fer depending on whether the natural capital at stake in the environmental

problem (e.g. clean air, ecosystems or resources) is generally substitutable or

8See the “Three Views on 2 degrees” by Jaeger and Jaeger (2011).
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1.3. Climate Targets

non-substitutable by human-made capital (e.g. machines, software or knowl-

edge) (Neumayer, 2013; Perman et al., 1996, pp. 22-29, 59-60). Considering

the many forms of natural capital that may be adversely affected by climate

change, Neumayer (2013, pp. 40-46) argues that the main controversy between

the cost-benefit and the target-based framing is about the substitutability of

environmental and economic values. Applied to the climate system as a whole,

holding “safe minimum standards”, as suggested by strong sustainability (Neu-

mayer, 2013, pp. 110-115, 118), corresponds to the very idea behind the guard

rail concept of the WBGU. This is why, in the remainder, we will refer to their

understanding of the target-based normative framing as strong sustainability.

It implies to structure the problem into a primary climate criterion and a sec-

ondary cost criterion.

Proponents of strong sustainability needs to be able to justify a specific climate

target. The WBGU (1995) argued that global mean temperature has never

been higher than 1.5◦C above preindustrial over the late Quaternary, i.e. the

last 800,000 years. It is a range which is still relatively familiar to climate re-

search by paleoclimatic evidence. Adding somewhat arbitrarily a tolerance of

0.5◦C, they put forward a limit of 2◦C as to preserve an environment similar

to present-day conditions. Meanwhile, more impact estimates have been done

and lead the IPCC (2014a, pp. 61-62) to conclude that the risks from climate

change increase starkly between 2-3◦C global warming. At higher tempera-

tures, large-scale tipping points could be triggered to induce major irreversible

changes in the Earth system. Yet, there are large uncertainties about the level

of these thresholds (IPCC, 2013a, pp. 1114-1119). This has raised a second line

of argument: In the light of these disastrous and hardly quantifiable events, the

WBGU (2014) suggests the 2◦C level as a precautionary limit to stay away from

large-scale changes.

However, making a climate target the primary objective of global economic pol-

icy is obviously a strong claim, too. The corresponding criticism brought for-

ward by, unsurprisingly, proponents of CBA is that “the simple target approach

is unworkable because it ignores the cost of attaining the goals” (Nordhaus,

2013, p. 7). If at all, cost considerations have featured the arguments for a

2◦C target more implicitly. The WBGU (1995) advocated the 2◦C limit as a

“tolerable window” of climate change that does not impose “excessive cost”.

The IPCC (2014b, pp. 448-451) estimated mitigation cost in the range of a

10



1.4. Uncertainty and Learning

0.04%-0.14% average reduction in global consumption growth over the course of

the 21th century for close to 2◦C scenarios 9. From different perspectives it has

been argued on qualitative grounds that the mitigation cost necessary for the

2◦C target do not compare to the climate risks looming beyond that level (e.g.

Caney, 2008; Steigleder, 2016). If mitigation cost were very high, the argument

of strong sustainability would lose its force.

Finding a decision criterion for strong sustainability without uncertainty is

straightforward. The question is reduced to how to cost-effectively comply with

the climate target. The corresponding decision criterion is (deterministic) cost-

effectiveness analysis given by

MinE

∫
C(E)e−ρtdt,

s.t. Tmax(E) ≤ Tg.
(2)

As above, E is the emission pathway, C(E) the mitigation cost and ρ the pure

rate of time preference. Furthermore, Tmax(E) denotes the maximum temper-

ature reached over time and Tg represents the temperature guard rail. Cost-

effectiveness analysis selects the emission pathway which keeps temperature

below the guard rail Tg at minimal mitigation cost. As the discounting only

affects mitigation cost, it has less influence on the optimum than in CBA where

also climate damages are discounted.

1.4 Uncertainty and Learning

The above idea of strong sustainability relies on the assumption that for any

given emission pathway it can be exactly determined whether or not the guard

rail will be transgressed. Unfortunately, this is far from the reality. Due to its

physically complex nature, the climate system is inherently difficult to predict.

There are limits to resolving its uncertainties in the light of hardly predictable

feedback mechanisms.

Target-based decision criteria primarily face uncertainty about the response of

temperature to emissions. There are several uncertainties in the carbon cycle

9They refer to a range of greenhouse gas concentration of 430-480 ppm CO2eq.
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1.4. Uncertainty and Learning

as well as uncertainty about climate sensitivity. Climate sensitivity is defined

as the difference in global mean temperature reached in equilibrium for a dou-

bling of preindustrial greenhouse gas concentrations. To make our point in this

study, it will be sufficient to consider the uncertainty about climate sensitiv-

ity: Numerous probability distributions have been estimated based on different

methods and datasets (IPCC, 2013a, pp. 921-926). They indicate that climate

sensitivity is likely between 1.5◦C and 4.5◦C. However, not only are there ques-

tions about the reliability of these estimates, the resulting distributions have

uncomfortable implications: It is impossible to give an upper bound to climate

sensitivity (long tail) and for high values the probability density declines less

fast than in exponential distributions, making extreme outcomes relatively more

likely (fat tail).

The struggle with climate sensitivity is as hard since it is an aggregation of nu-

merous feedback mechanisms in the climate system (Roe and Baker, 2007; Allen

et al., 2009). As a complex system the climate becomes harder to predict the

more it moves away from its initial state. The climate sensitivity to increased

greenhouse gas concentrations without feedbacks is relatively straightforward

to calculate (1.2-1.3◦C, see Planck feedback parameter in Bony et al., 2006).

However, this temperature increase changes many processes of the climate sys-

tem that further reinforce the warming. They are known as positive feedback

mechanisms. Finally, in a world of e.g. 4◦C warming, the conditions would be

so different from today that it is almost impossible to say anything about these

processes and predict whether warming would stop. This is what Roe and Baker

(2007) argue in a more formal sense, examining the implications of fat tails in

climate sensitivity distributions. Climate sensitivity has shown to be inherently

difficult to determine so far.

The uncertainty about climate sensitivity poses a serious problem for strong

sustainability. The primary concern to stay below the guard rail was based

on the assumption that this is possible under any circumstance. However, the

probability density distributions have infinite support (long tails), which implies

that no climate target can be met with certainty. For any temperature level,

there is at least a small chance that it will be transgressed due to past emissions

alone. Strong sustainability indeed appears too strong.

12



1.4. Uncertainty and Learning

However, there has been an attempt to extend the idea of strong sustainability

to a probabilistic setting. The temperature guard rail is replaced by a maxi-

mum probability to transgress it. This is suggested by Baumgärtner and Quaas

(2009) as a general approach for strong sustainability under uncertainty. In

climate economics, it has been introduced by den Elzen and Van Vuuren (2007)

and Held et al. (2009) who developed probabilistic cost-effectiveness analysis.

The climate target can be reformulated as to maintain a minimum probability

to stay within the temperature guard rail. Henceforth, this will be referred to

as a probabilistic climate target.

A probabilistic climate target raises the question of a maximum acceptable level

of exceedance probability. It is a second normative parameter in addition to the

temperature guard rail and there seems no obvious way to set it. A sugges-

tion has been made on the basis of the agreement at the 17th Conference of

the Parties (UNFCCC, 2012). The Parties accepted the objective to “have a

likely chance of holding the increase in global average temperature below 2◦C

[author’s emphasis].” Along the lines of IPCC language, Neubersch et al. (2014)

interpret “likely” as a two thirds probability. Nevertheless, even if this policy

reference is considered too weak and contentious, increasing the number of ar-

guable modeling choices by one may still be manageable for policy advice as

results can be presented for different parameter values.

Finally, increasing future knowledge about climate sensitivity adds another level

of complexity to the decision problem. Webster et al. (2008) estimate that the

uncertainty about climate sensitivity can be reduced by 20-40% from climate

observations in the next two to five decades. Moreover, advances in the concep-

tual understanding of crucial physical processes as for example in clouds may

grant more knowledge (IPCC, 2013a, pp. 593-594). Taking future learning into

account, we obtain a multi-stage decision problem. Now, there are at least two

decisions to make, one before and one after a learning event. The event provides

the decision maker with a updated probability distribution of climate sensitiv-

ity from Bayesian learning. Hence, both decisions are based on a different state

of knowledge. To consistently anticipate and adapt our choices in the light of

new information, an adequate target-based decision criterion must be able to

integrate future learning.
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Altogether, the previous considerations were meant to give some background to

the question asked by this study:

How can strong sustainability be formalized in a consistent decision criterion for

the climate problem under uncertainty and future learning about climate sensi-

tivity?

The following section introduces the two existing decision criteria which will be

investigated more thoroughly in chapters 3 and 4.

1.5 Probabilistic Cost-Effectiveness and Cost-Risk Anal-

ysis

Two decision criteria have been proposed for implementing the target-based

framework under uncertainty and learning: probabilistic cost-effectiveness anal-

ysis (CEA)10 and cost-risk analysis (CRA). CEA without learning has been

introduced by den Elzen and Van Vuuren (2007) and Held et al. (2009). It can

be formulated as

MinE C(E),

s.t. Rex(E|p(θ)) ≤ Rg.
(3)

As usual, E = E(t) denotes the emission pathway over time. For notational

convenience, the time integral as in (2) is dropped and C(E) refers to the dis-

counted time-aggregated mitigation cost. Climate sensitivity θ, the tempera-

ture response to emissions, is only known up to the probability distribution

p(θ). Moreover, Rex(E|p(θ)) is the probability of exceeding the temperature

guard rail Tg under emissions pathway E and probability distribution p(θ). It

is calculated by

Rex(E|p(θ)) = Eθ|p(θ)[Θ(Tmax(E, θ)− Tg)]. (4)

Here, Tmax(E, θ) is the maximum temperature resulting from the emission path-

10The literature has often used the acronym ‘CEA’ for deterministic cost-effectiveness anal-
ysis as introduced in section 1.3. Due to the focus of this study, we follow Schmidt et al.
(2011) and refer to probabilistic cost-effectiveness analysis as CEA.
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1.5. Probabilistic Cost-Effectiveness and Cost-Risk Analysis

way E under climate sensitivity θ. Thereby, ‘temperature’ always refers to global

mean temperature above preindustrial. The notation Θ(.) represents the Heavi-

side function which is one for positive arguments and zero otherwise. The prob-

ability of exceeding Tg is given by the expectation Eθ|p(θ) of Θ[Tmax(E, θ)−Tg]
over climate sensitivity θ distributed by p(θ). Hence, the decision criterion im-

plied by (3) chooses minimal mitigation cost as long as exceedance probability

is not higher than the risk guard rail Rg.

To integrate learning about climate sensitivity, we consider the following two-

stage decision problem. The emission pathway is split up into emissions be-

fore and after learning (E0 and Em): First, the decision maker decides for

emissions E0 before learning. After learning and obtaining one of n messages

m ∈ {1, ...n}, she updates her prior distribution p(γ) to the posterior distri-

bution pm(γ). Based on these information, she decides on the emissions Em

after learning. The n-dimensional vector E = (E1, ..., En) represents the set of

emission pathways after learning conditional on the message obtained.

CEA is extended to model learning by Schmidt et al. (2011) in the following

way:

Min(E0,E) Em[C(E0, Em)]

s.t. ∀m : Rex(E0, Em|pm(θ)) ≤ Rg.
(5)

Now, the decision maker chooses an emission plan (E0,E). It specifies the emis-

sion pathway before learning E0 as well as the emission pathway after learning

(Em) conditional on the posterior distribution pm(θ). The mitigation cost and

exceedance probability depend on both decisions E0 and Em. Each learning

scenario m occurs with a respective likelihood πm and the expectation over all

learning scenarios is Em[.] :=
∑
m πm(.). Thus, CEA solves for the emission

plan with the least expected mitigation cost that keeps the exceedance proba-

bility Rex(E0, Em|pm(θ)) below Rg in all learning scenarios. In other words, the

probability threshold criterion is applied to all possible posterior distributions

of climate sensitivity.

However, it turns out that this type of CEA may be infeasible under learning

and can have a negative expected value of information (see chapter 3). This is
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why Schmidt et al. (2011) develop CRA, an alternative target-based criterion

within the expected utility framework. Following the formulation of Neubersch

et al. (2014), CRA can be formulated under learning as

Min(E0,E) Em[C(E0, Em) + βRDY (E0, Em|pm(θ))]. (6)

Here, RDY represents the time-discounted expected “degree years”, another

measure of climate risk introduced by Schneider and Mastrandrea (2005). De-

gree years quantify the overshoot of a temperature guard rail. They represent

the area between the temperature trajectory over time T (t) and the temperature

guard rail Tg. The measure is given by

RDY (E0, Em|pm(θ)) =∫
Eθ|pm(θ)[Θ(T (t)(E0, Em, θ)− Tg)(T (t)(E0, Em, θ)− Tg)e−ρt]dt.

(7)

As the mitigation cost C(E0, Em), this risk measure is obtained by a discounted

time-aggregation. Unlike exceedance probability, it also takes the magnitude

and the duration of the potential guard rail overshoot into account.

However, the main reason not to use exceedance probability Rex as the risk

function in CRA is that it may give results which are obviously not in the sense

of strong sustainability. Anticipated by Schmidt et al. (2009), Neubersch et al.

(2014) find such CRA to suggest that emissions should be strongly increased

in the “bad” learning scenarios of high climate sensitivity. This is because if

exceedance is almost certain, the risk can hardly increase anymore with addi-

tional emissions. Hence, mitigation cost savings become more attractive than

risk reductions. Formally, they argue that the risk function must be convex, i.e.

at least linear, in temperature to avoid such behavior in high learning scenarios.

CRA minimizes a weighted sum of mitigation cost and climate risk. As an

unconstrained optimization, it mimics cost-benefit analysis. However, it is not

based on classical damage functions, but rather on the willingness to prevent

temperature exceeding a normatively predefined guard rail. Obviously, the op-

timum depends on the trade-off parameter β between cost and risk. The pa-

rameter is calibrated such that without learning the optimum is just at the level
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1.5. Probabilistic Cost-Effectiveness and Cost-Risk Analysis

of the probabilistic climate target. Chapter 4 will discuss this calibration pro-

cedure in more detail.

Finally, we introduce some generalization of terminology. Motivated by the

distinction made by strong sustainability, this study focuses on investigating

different ways to relate two kinds of values to each other: mitigation cost and

climate risk. First, mitigation cost refer to welfare losses from emission reduc-

tions relative to a BAU scenario. Second, climate risk can be understood as

the risk of “intolerable consequences” looming beyond the guard rail that the

WBGU speaks of. It should qualitatively not be confused with the expected

damages from a detailed impact assessment in the cost-benefit framing. We

may say that CEA and CRA use different measures of climate risk: exceedance

probability Rex and expected degree years RDY . Generally, more convex func-

tions of temperature overshoot (T (t)− Tg) than the linear form in RDY can be

thought of. Large part of the analysis however will not need these distinctions

such that the general term climate risk shall refer to either of them.

* * *

This chapter sketched the background to the question examined by this study.

The two normative framings used in decision analysis of the climate problem

are the cost-benefit approach and the climate target approach. The latter is

most prominently advocated by the WBGU who understand the target as a

maximum acceptable limit in the sense of strong sustainability. It implies to

structure the problem into a primary climate criterion and a secondary cost

criterion. However, target-based criteria need to take uncertainty about cli-

mate sensitivity into account. The question arises how strong sustainability

can be formalized in a decision criterion to consistently integrate uncertainty

and anticipated future learning about climate sensitivity. So far, probabilis-

tic cost-effectiveness and cost-risk analysis have been suggested which will be

investigated more thoroughly in chapter 3 and 4.
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2 The Standard Framework: Expected Utility

Theory

This chapter presents the standard framework for decision-making under un-

certainty: expected utility theory. Understanding its basis will be helpful for

analyzing the properties of different decision criteria, first of all CEA and CRA

in chapters 3 and 4. Since the foundational work by Von Neumann and Morgen-

stern (1944), expected utility theory has become the most influential framework

against which other theories of decision under uncertainty have to be bench-

marked (IPCC, 2014b, p. 168). It provides the decision maker with a strong set

of consistency principles to guide her choice. However, as will become apparent,

strong sustainability may suggest to drop expected utility theory. Developing

the von Neumann-Morgenstern Theorem will help to see possible chances and

problems of decision criteria outside expected utility theory.

First, basic terminology of decision analysis is introduced and the climate prob-

lem with learning is presented in a simple guiding model that will be used for

illustration throughout this study (section 2.1). Second, the von Neumann-

Morgenstern axioms and the corresponding representation theorem are pre-

sented (section 2.2). Finally, it will be shown that CRA is an expected utility

criterion, while CEA violates several of the von Neumann-Morgenstern axioms

(section 2.3).

2.1 Concepts of Decision Theory

In decision analysis, choosing between options with different possible outcomes

is considered a choice on lotteries. A finite lottery L consists of n possible out-

comes (X1, ..., Xn), each occurring with a certain probability (p1, ..., pn), where∑
pi = 1. The decision problem tackled by CEA and CRA can be formalized

accordingly. Every emission pathway is associated with a certain outcome of

mitigation cost and corresponds to a lottery on different outcomes of maximum

temperature determined by the probability distribution of climate sensitivity.

In the theory of choice under uncertainty, decision criteria such as CEA or CRA

can be formalized in terms of preference relations over lotteries. By a prefer-

ence relation, or simply ‘preferences’, we mean a set of statements, indicating

which lottery the decision maker would choose from pairwise offers. For two
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lotteries L1 and L2, L1 � L2 expresses that the decision maker prefers L1 over

L2, while L1 ∼ L2 expresses that she is indifferent between the two. The weak

preference relation L1 � L2 expresses that the decision maker’s preferences are

either L1 � L2 or L1 ∼ L2.

αL1 + (1− α)L2

L2

X2

1− p2

X1p2
1− α

L1

X2

1− p1

X1p1

α

Figure 1: The compound lottery αL1 + (1− α)L2 is a lottery that gives the lottery
L1 with a probability α and L2 with a probability (1− α). The lotteries L1, L2 have
the probabilities p1, p2 of outcome X1 to occur from a set {X1, X2}.

To include learning about climate sensitivity, we need to introduce the con-

cept of compound lotteries. A compound lottery is a lottery whose outcomes

are again lotteries. The lottery tree in Figure 1 shows the compound lottery

αL1+(1−α)L2. The notation implies that the decision maker has a probability

α of obtaining lottery L1 and a probability (1− α) of obtaining lottery L2. In

the example, L1 and L2 are defined as lotteries on the same outcomes X1 and

X2 with different probabilities p1 and p2. Strictly speaking, outcomes can be

considered as lotteries with certainty and the above notation can be used for

outcomes, too. For instance, the lottery L1 could be written as p1X1+(1−p1)X2.

Generally, decision makers accept the axiom of reduction of compound lotter-

ies. It allows to reduce compound lotteries to simple lotteries using Bayes’ Law.

The probability of an outcome is calculated by multiplying the probabilities to

reach it along each path in the lottery tree and summing over all possible paths.

Thus, we could rewrite the lottery in Figure 1 as [αp1 + (1− α)p2]X1 + [α(1−
p1) + (1− α)(1− p2)]X2. In the following, we will always assume the axiom of

reduction to hold.
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learn decide

(high cost, low risk)

(low cost, moderate risk)

(high cost, high risk)

(low cost, very high risk)

H

L4 “ignorant fatalism”

E
h

L3 “heroic containment”
El

1−
π

L

L2 “fortunate escape”

E
h

L1 “safety first”
El

π

Figure 2: The “guiding model” for decision-making on the climate problem under
learning: Learning reveals that climate sensitivity is either “low” (L) or “high” (H).
In each learning scenario low emissions (El) or high emissions (Eh) can be chosen.
This can give four different climate lotteries (L1 to L4) associated with different
combinations of mitigation cost and (remaining) climate risk. In the decision tree,
squares denotes decision nodes, while circles denote lottery nodes.

Now, let us present the climate problem under learning using the illustrative

example in Figure 2. For the moment, we only consider the anticipated deci-

sions after learning. The question is how to choose emissions once there is more

knowledge about the response of the climate system. We follow a common nota-

tion, depicting lottery nodes by circles and decision nodes by squares. Imagine

we anticipate that at a future point in time we will have learned from new

climate observations whether climate sensitivity is either “low” (L) or “high”

(H). In each learning scenario we will have to choose between subsequent low

emissions (El) or high emissions (Eh). We assume partial learning such that

some uncertainty about the eventual climate outcome still remains. Today, we

do not know yet which of the two learning scenarios will occur. Nonetheless, we

know that we have a probability of π to learn L and (1− π) to learn H. Thus,

it is possible to prepare our choice and plan for emissions conditional on what

is learned.

20



2.1. Concepts of Decision Theory

There are four possible climate lotteries we could end up with: First, suppose

we learned that climate sensitivity is low (L). Either, we still reduce emis-

sions (L1) to make sure that the residual risk of transgressing the 2◦C is as

small as possible (“safety first”). Or we save the money of an ambitious energy

transformation and invest it into other fields (L2). Here, we would accept a

moderate climate risk maybe about as high as it had been for low emissions

without learning (“fortunate escape”). However, it could also turn out that we

have underestimated the magnitude of climate change and we receive the infor-

mation that climate sensitivity is high (H). Now we know that no matter what

we do, we will likely face “intolerable consequences” from climate change. We

could either try to keep the inevitable damage as small as possible (L3) by de-

voting much effort into emission reduction (“heroic containment”). Or we give

up climate mitigation (L4) and instead use the funds for adaptation or other

purposes (“ignorant fatalism”).

Our framework requires to define preferences over climate lotteries such as the

L1,...,L4 in Figure 2. In general, we define a simple climate lottery as a probabil-

ity distribution of possible temperature trajectories. Choosing the climate lot-

tery LE(t),p(θ) can be interpreted as pursuing the emission pathway E(t) under

a probability distribution of climate sensitivity p(θ). In each leaning scenario,

only climate lotteries with the corresponding climate sensitivity distribution of

this scenario can be selected.

Now, decisions under learning can be modeled as a choice on compound climate

lotteries. For example, suppose in Figure 2 we decide before learning on the

emission plan of choosing Eh if L and El if H. Then, we effectively choose the

compound climate lottery πL2 +(1−π)L3
11. Any emission plan we may choose

corresponds to a compound climate lottery.

As stylized as this model may be, we will refer to it throughout this study for

illustrating some more abstract considerations. It may provide helpful intuitions

to put relevant properties of decision criteria into context. Four such properties

will be introduced in the following: the von Neumann-Morgenstern axioms.

11Strictly speaking, identifying the decision problem depicted in Figure 2 as a choice on com-
pound lotteries as shown in Figure 1 presupposes some consistency principles to be discussed
in section 3.2.
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2.2 The von Neumann-Morgenstern Theorem

The consistency requirements that expected utility theory based on Von Neu-

mann and Morgenstern (1944) makes towards the preferences over lotteries are

the von Neumann-Morgenstern axioms. The axioms are completeness, transi-

tivity, continuity and independence. We present them following the formulation

of Gollier (2001, pp. 4-6).

Completeness: Preferences � on the lottery space L are such that for any two

lotteries L1, L2 ∈ L it is either L1 � L2, L1 ≺ L2 or L1 ∼ L2.

Completeness demands from the decision maker to be able to state for any pair

of lotteries whether she prefers one over the other or whether she is indifferent

between the two. There is no third category.

Transitivity: Preferences � on the lottery space L are such that for any

L1, L2, L3 ∈ L with L2 � L1 and L3 � L2, it is L3 � L1.

Transitivity requires preferences to be consistent over a triple. A decision maker

with complete and intransitive preferences can be “money pumped” (e.g. Man-

dler, 2005). Transitivity is indispensable for as to avoid preference cycles.

Completeness and transitivity are the standard minimum requirements. Yet,

having well-defined preferences on the whole option space may be difficult if the

lotteries are hard to compare and feature incommensurable values. The deci-

sion maker may feel incapable of finding any argument for why to prefer one

or the other or be indifferent between the two. It has been argued that com-

pleteness is too demanding when we face moral dilemmas or uncertainty close

to ignorance (Gilboa et al., 2009). This may apply to the climate problem, too.

For instance, as it remains difficult to draw clear distinctions between scenarios

of strong climate change with potentially disastrous domino effects (see section

1.4), it could be argued that there is no basis at all for making choices between

the scenarios L3 and L4 of high warming in Figure 2.

Yet, accepting the existence of incomparable options points to the limits of what

decision analysis can do. There is no way to guide a decision maker on the basis

of ambiguous or undefined preferences. The requirement we make here towards
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preferences on the climate problem is that there always exists a unique optimal

choice in each learning scenario, i.e. a lottery L∗ such that for all other avail-

able lotteries at this node L 6= L∗ it is L∗ � L. Strictly speaking, this does

not make completeness necessary, however there is no reason why under this

requirement incompleteness should make any difference. Whether or not pref-

erences over non-optimal lotteries are defined, does not affect the optimal choice.

Continuity: Preferences � on the lottery space L are such that for any L1, L2, L3 ∈
L with L3 � L2 � L1 there exists a probability p ∈ [0, 1] such that: pL1 + (1 −
p)L3 ∼ L2.

Here, the decision maker accepts that there is always a (prior) probability p

for which she would be indifferent between receiving a compound lottery on a

“good” (L3) and a “bad” lottery (L1), pL1 + (1− p)L3, and receiving an inter-

mediate lottery L2. Continuity implies that the probability of obtaining either

L1 or L3 always makes a gradual difference to the decision maker. It can be

interpreted by analogy with the continuity in mathematics only for a mapping

from probability to a preference ranking: A small change in the probability of

obtaining some good or bad outcome should only translate to a small change in

the preference ranking of the lotteries, i.e. it should make the decision maker

only slightly better or slightly worse-off. In other words, the ranking of two

lotteries with a small difference in probabilities should not be too different.

This already indicates why CEA violates continuity. Suppose the primary crite-

rion asserts that any probability for transgressing the 2◦C level of 50% or lower

is preferred, while the secondary criterion implies to minimize mitigation cost.

Then, exchanging an option with a 50% probability for an option with only a

slightly higher probability makes an enormous difference as the primary crite-

rion is triggered. It exchanges the optimal choice (50%) for a choice (> 50%)

which is worse than any choice with a chance below 50%. Hence, the probability

threshold criterion as in CEA is at odds with continuity. This is will be shown

formally in section 2.3.

Discussing the normative justification of continuity is somewhat difficult. As

Gilboa (2009, pp. 80-81) points out, not only is it impossible to conduct real-

world experiments on whether or not people comply with it. Its violation re-

quires infinitely many observations. Moreover, the infinite number of options
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also challenges normative argument. He suggests to engage in thought exper-

iments such as whether one would still go for some small benefit if the action

requires risking one’s life with a very low probability. An example would be

crossing a frequented street for a time gain of only a few seconds. Yet, although

Gilboa concedes that the framing of such thought experiments is often crucial

for the choice, he concludes that for most applications we readily accept conti-

nuity.

It is possible to challenge continuity for a choice between a 100%-certain and

an uncertain option. Absolute certainty could make a qualitative difference.

However, since the probability distribution of climate sensitivity has a long tail,

no temperature guard rail can be met with certainty. We need to live with a

small chance of disastrous climate change. Eventually, setting a specific (non-

zero) level of probability as the maximum acceptable risk appears somewhat

arbitrary and artificial. Probabilities within the open interval (0, 1) seem con-

tinuous as real numbers. A probabilistic climate target as introduced in section

1.4 may be a pragmatic policy move to maintain the idea of a climate target

in a probabilistic setting. However, the radical exclusion of any option slightly

above the probability threshold is at odds with the consistency intuition behind

the continuity axiom.

Independence: Preferences � on the lottery space L are such that for any

L1, L2, L3 ∈ L and p ∈ [0, 1]: L1 � L2 ⇐⇒ pL1 + (1− p)L3 � pL2 + (1− p)L3.

Independence asserts that whether the decision maker prefers L1 � L2 should

not depend on other possible lotteries that she could receive. The decision

maker accepts that comparing pL1 + (1 − p)L3 to pL2 + (1 − p)L3 is nothing

but comparing L1 to L2, irrespective of p and L3. It can be interpreted as a

condition to consistently extend the choice from simple to compound lotteries

and vice versa. As presented in section 2.1, making choices while anticipating

future learning corresponds to a decision on compound lotteries. Hence, violat-

ing independence has normatively uncomfortable implications under learning:

As uncertainty resolves, i.e. the decision maker learns, she may change her mind

about a given pair of lotteries.

Let us illustrate this for the climate problem. Suppose prior to learning the de-

cision maker prefers to go for low emissions in both learning scenarios in Figure
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2.1, i.e. πL1 +(1−π)L3 � πL2 +(1−π)L3. Now, violating independence would

imply that she can prefer L1 ≺ L2. Hence, once she actually learns that climate

sensitivity is low she does not go for the option she initially preferred. The

decision maker does not correctly anticipate the choice which raises a problem

of time-inconsistency. Section 3.2.2 will discuss this issue more thoroughly and

show that by violating independence at least one other standard consistency

principle must be violated, too.

Having introduced the axioms, we can turn to the von Neumann-Morgenstern

Theorem. First, we define the notion of a utility representation of preferences:

Utility Representation:The function V : L→ R is a utility representation of

the preferences � over the lottery space L if and only if for all L1, L2 ∈ L:

V (L1) > V (L2)⇔ L1 � L2

V (L2) = V (L2)⇔ L1 ∼ L2.
(8)

The utility representation is a function that stands for the degree of satisfac-

tion the decision maker has according to her preferences by holding a certain

lottery. Such utility function over lotteries is ordinal, i.e. the magnitude of the

differences in utility does not have a meaning. It only provides a ranking from

the most to the least preferred lottery. For preferences which have a utility rep-

resentation, the optimal choice can be obtained by finding the maximum of the

utility representation. Finally, we can formulate the von Neumann-Morgenstern

Theorem following Gollier (2001, p. 7):

von Neumann-Morgenstern Theorem: If and only if preferences � on the

lottery space L satisfy completeness, transitivity, continuity and independence,

there exists a utility representation V : L→ R of � that is linear in probabilities.

That is, for a lottery L with n possible outcomes Xi to occur with probability pi,

where i = 1, ...n, there exists a scalar Ui such that

V (L) =
∑

piUi. (9)
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The essence of the theorem is that a decision maker accepting the above axioms

is an expected utility maximizer. The Ui can be interpreted as the utility rep-

resentation over outcomes Xi known from choice under certainty in consumer

theory. An expected utility maximizer sums the probability-weighted utilities

of all outcomes for each of the lotteries and chooses the lottery with the highest

sum.

Let us sketch the proof of (9) for a finite set of outcomes following Gollier

(2001, pp. 7-8). This provides some insight into the function each axiom has

in expected utility theory: By completeness and transitivity, we can pairwise

compare all lotteries in the lottery space L and arrange them on a scale from

‘worst’ to ‘best’. Let us denote the worst lottery by L and the best lottery by

L. Then, by continuity we can find a λi ∈ [0, 1] for any lottery Li such that

λiL+ (1− λi)L ∼ Li. (10)

As the probability of an equally preferred compound lottery on L and L, λi is

a utility representation of Li. We can define V (Li) := λi. Thus, completeness,

transitivity and continuity are sufficient for the existence of a utility represen-

tation of the preferences over lotteries.

Finally, independence requires the utility representation to be linear in proba-

bilities. Using the definition of V (L), the axiom of reduction and independence,

it is possible to show (see appendix A.1) that for any β ∈ [0, 1] and L1, L2 ∈ L

V (βL1 + (1− β)L2) = βV (L1) + (1− β)V (L2). (11)

Hence, the utility of the compound lottery needs to be calculated by the probability-

weighted sum of the corresponding simple lotteries. In other words, the utility

function is linear in the probability vector.

This section presented expected utility theory and its axiomatic basis in the von

Neumann-Morgenstern framework. We have seen that only a decision maker

whose preferences satisfy completeness, transitivity, continuity and indepen-

dence is an expected utility maximizer. Before turning to the discussion of
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CEA and CRA, we will formally show how both criteria differ in their compli-

ance with the von Neumann-Morgenstern axioms.

2.3 Axiomatic Deviation of CEA

The first step for characterizing CEA and CRA is to check their compliance with

the von Neumann-Morgenstern axioms. The case for CRA is straightforward.

Without learning, CRA as in (6) can be written as

MaxE Eθ[U(E, θ)]

U := −
∫
{C(t)(E) + βΘ[T (t)(E, θ)− Tg](T (t)(E, θ)− Tg)}e−ρtdt.

(12)

In this form, it becomes obvious that CRA is an expected utility maximization.

The von Neumann-Morgenstern theorem implies that CRA satisfies complete-

ness, transitivity, continuity and independence.

Schmidt et al. (2009) check the von Neumann-Morgenstern axioms for CEA.

Let us present their reasoning here. First, the CEA criterion needs to be formu-

lated in terms of a preference relation on climate lotteries as defined in section

2.1: As usual, we consider n learning scenarios with probability distributions of

climate sensitivity p1(θ), ..., pn(θ). Let L denote the set of simple climate lot-

teries that can be received with learning. It comprises all possible probability

distributions of temperature trajectories that result from any combination of an

emission pathway E(t) with one of the distributions p1(θ), ..., pn(θ). According

to the functional relations used in section 1.5, any simple climate lottery L ∈ L

can be associated with a unique pair of mitigation cost C(L) and climate risk

R(L).

Now, for choosing between two lotteries L1, L2 ∈ L, CEA applies two decision

criteria in lexicographic order. The primary criterion is the probabilistic guard

rail criterion �1 given by

L1 �1 L2 ⇔ {R(L1) ≤ Rg} ∧ {R(L2) > Rg}

L1 ∼1 L2 ⇔ {R(L1) ≤ Rg} ∧ {R(L2) ≤ Rg}.
(13)

Any option below the guard rail is strictly preferred to any option above the
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guardrail. If both options are below the guard rail, the primary climate criterion

values them equally. However, the criterion is not complete, as no preferences

are defined for two lotteries which both transgress the risk guard rail. Now, by

the secondary criterion �2 a simple climate lottery is preferred if and only if

mitigation cost are smaller, i.e.

L1 �2 L2 ⇔ C(L1) ≤ C(L2). (14)

Now, CEA is a lexicographic composition of the two criteria. This implies that

the decision maker follows the primary criterion as long as it gives a strict pref-

erence. The secondary criterion only applies if the decision maker is indifferent

by the first criterion. Accordingly, the CEA criterion � is given by

L1 � L2 ⇔ {L1 �1 L2} ∨ {(L1 ∼1 L2) ∧ (L1 �2 L2)}

L1 ∼ L2 ⇔ {L1 ∼1 L2} ∧ {L1 ∼2 L2}.
(15)

After having formulated CEA as a preference relation over the set of simple

climate lotteries L, we can check the axioms by definition. Completeness and

transitivity are straightforward: The primary criterion is incomplete because

preferences are not defined over two lotteries that both transgress the risk guard

rail. This implies that CEA itself is incomplete. Transitivity is satisfied by CEA

as both the primary and the secondary criterion are transitive.

Now, let us turn to the continuity axiom. For this, we need to specify how the

CEA criterion applies to compound lotteries. The climate risk can be obtained

by the axiom of reduction:

R(pL1 + (1− p)L3) = pR(L1) + (1− p)R(L3) (16)

Continuity would be satisfied if for any L1, L2, L3 ∈ L we had

L3 � L2 � L1 ⇒ ∃p ∈ [0, 1] : pL1 + (1− p)L3 ∼ L2. (17)

However, it is possible to construct counterexamples for the CEA criterion.

28



2.3. Axiomatic Deviation of CEA

Let us consider L1, L2, L3 ∈ L with R(L2) < R(L3) = Rg < R(L1) and

C(L2) > C(L3). If such triple did not exist, there would obviously be no

climate problem.

Applying the CEA criterion gives L2 � L1 and L3 � L1 since L1 transgresses

the risk guard rail Rg, while L2 and L3 comply with it. Moreover, the sec-

ondary criterion implies L3 � L2. Hence, we obtain L3 � L2 � L1. However,

any p ∈ (0, 1] would make pL1 + (1− p)L3 transgress the risk guard rail Rg as

R(L3) = Rg and R(L1) > Rg which implies L2 � pL1 + (1 − p)L3. For p = 0,

we would only recover L2 ≺ L3. Thus, it is not possible to find a probability

p ∈ [0, 1] to make the decision maker indifferent between pL1 + (1 − p)L3 and

L2. This violates the continuity axiom.

Finally, we check the compliance with the independence axiom. It would require

for any L1, L2, L3 and p ∈ [0, 1]:

L1 � L2 ⇔ pL1 + (1− p)L3 � pL2 + (1− p)L3. (18)

A similar counterexample can be made. Let us consider L1, L2, L3 ∈ L with

R(L2) < R(L1) < Rg < R(L3) and C(L1) < C(L2). For emission pathways

which both comply with the guard rail smaller mitigation cost are chosen such

that L1 � L2. However, due to R(L1) > R(L2) it is possible to find a p ∈ (0, 1]

such that

R(pL1 + (1− p)L3) > Rg ≥ R(pL2 + (1− p)L3). (19)

Applying the guard rail criterion gives pL1 +(1−p)L3 ≺ pL2 +(1−p)L3. Thus,

the CEA preferences � violate independence, too.

* * *

In this chapter, we introduced expected utility theory in the von Neumann-

Morgenstern framework. We showed that CRA is an expected utility approach,

while CEA violates completeness, continuity and independence. In general,

each of the four von Neumann-Morgenstern axioms is a desirable consistency

principle. However, consistency alone is not sufficient as can be seen with CBA,
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which also is an expected utility criterion. Approaching the climate problem

from the perspective of strong sustainability suggests CEA as a lexicographic

decision criterion outside of expected utility theory. After all, the question arises

how dispensable the von Neumann-Morgenstern axioms are in this context.

Analyzing the properties of CEA and CRA in the following two chapters will

reveal the implications of the axioms and allow to discuss whether the criteria

are adequate formalizations of strong sustainability.
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3 The Limits of CEA: Problems of a Probabilis-

tic Target under Learning

In this chapter, we will discuss whether CEA can adequately formalize strong

sustainability under uncertainty and learning. Under learning, CEA still ap-

plies a primary climate criterion and a secondary mitigation cost criterion. The

former implies that the risk guard rail needs to be held in all learning scenarios,

while the latter aims at minimizing cost. It extends the general idea of strong

sustainability under uncertainty to decisions under learning. Yet, as this chapter

will show, there are some normatively unappealing consistency problems of CEA

and, more generally, of probabilistic constraints if learning is taken into account.

First, depending on how “much” is learned, CEA may become infeasible as it

cannot deal with overshoots of the (probabilistic) climate target (section 3.1).

Second, CEA can have a negative expected value of information (EVOI), a

phenomenon that we will explore in three steps (section 3.2): The negative EVOI

emerges due to the posterior probabilistic constraint in CEA that leads to the

violation of the independence axiom (section 3.2.1). In general, dropping this

axiom implies to relax at least one of three standard consistency requirements of

dynamic choice (section 3.2.2). However, an actual negative EVOI only occurs

in CEA if the mitigation cost function is sufficiently convex (section 3.2.3). Both

issues, the infeasibility and the negative EVOI, point to conceptual problems of

probabilistic constraints under learning.

3.1 Infeasibility and the Probabilistic Contradiction

CEA works only as long as the probabilistic constraint can be met. However,

given past emissions, this may be impossible for any emission pathway under

certain combinations of temperature and risk guard rails. On the axiomatic

level, the infeasibility problem is reflected by the incompleteness of the CEA

preference relation as defined in (15). CEA cannot deal with overshoots of

the (probabilistic) climate target. Likewise, CEA can be thought of as a con-

strained expected utility maximization whose constraint may leave an empty

option space.

Let us illustrate the feasibility limits of CEA with some numbers from the Model

of Investment and Technological Development (MIND) (Edenhofer et al., 2005).
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Schmidt et al. (2009) find that the 2◦C target can be met in MIND without

learning for climate sensitivities up to 6.4◦C. This corresponds to the 92%-ile of

their prior distribution. Restricting the maximum rate of emission reduction to

13.3% annually as done in Lorenz et al. (2012) and Roth et al. (2015), the model

cannot reach the 2◦C target for climate sensitivities above 3.5◦C. Finally, under

learning feasibility depends on the posterior distributions and their numerical

sampling since a posterior constraint requires to meet the probabilistic target

in all learning scenarios.

While for an analysis without learning the feasibility of CEA can be guaranteed

by choosing an achievable target, any target can be out of reach if learning is

included. Consider the extreme case of perfect learning, i.e. if the exact value

of climate sensitivity was revealed. Here, CEA is obviously infeasible for any

guard rail as long as the prior distribution has infinite support. Meeting the

target in all learning scenarios would require meeting it for any climate sensi-

tivity, which makes it effectively equivalent to deterministic CEA. Considering

partial learning, feasibility depends not only on how “much” is expected to be

learned. Above all, the numerical sampling of the climate sensitivity values has

a crucial influence because CEA requires compliance in all learning scenarios.

As pointed out by Schmidt et al. (2009), feasibility of CEA under learning is a

“numerical artefact”.

The potential infeasibility is a symptom of a more conceptual problem inher-

ent to CEA under learning. In fact, requiring to meet a probabilistic climate

target in all possible learning scenarios contradicts the very idea of such target.

To see this, let us put aside the infeasibility problem and suppose that it was

actually possible to meet the 2◦C target with certainty. Now, for some reason,

e.g. because 100%-compliance would demand very high cost, the decision maker

still favors a probabilistic climate target. Suppose she would like to aim for a

chance Rg = 80% of meeting the 2◦C target. By making this statement, she

obviously accepts the possibility of missing the 2◦C target. However, applying

CEA under perfect learning would make her meet the 2◦C target with certainty

as the risk constraint needs to hold in all learning scenarios. The probabilistic

target has effectively become a deterministic target. The posterior constraint

of CEA under learning contradicts the very probabilistic basis on which it was

developed in the first place.
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To resolve the problem, it must be clarified what exactly is meant by the con-

cept of a probabilistic climate target. The above argument shows that if the

probabilistic target is referred to any state of knowledge, the specific proba-

bility threshold Rg becomes irrelevant. Thus, it makes more sense to consider

the probabilistic climate target as the statement that given the current state

of knowledge the decision maker aims to meet the temperature target Tg with

a certain probability Rg. This conception implies that a probabilistic climate

target needs to be defined with respect to some probability distribution of cli-

mate sensitivity. This would allow for overshoots of the target in certain states

of knowledge. The overshoots would need to be determined on the basis of the

probabilistic climate target and the state of knowledge it refers to. As we will

see in section 4.1, this is the very approach a calibrated CRA makes. Before,

we will point to a second problem raised by a posterior risk constraint.

3.2 The Expected Value of Information

The motivation to learn and reduce uncertainty in a decision problem is to make

better decisions. Quite paradoxically, CEA appears to violate this fundamental

principle since it can give a negative expected value of information (EVOI). The

EVOI generally refers to the welfare gain due to learning. It can be interpreted

as the maximum amount to spend for receiving new information. Schmidt et al.

(2009) analyze a scenario of partial future learning about climate sensitivity

with CEA in MIND and find a negative EVOI for most risk guard rails on the

2◦C target. They show that the problem is conceptually linked to the violation

of the independence axiom. Generally, the issue is well known and was already

investigated by Blau (1974) and Lavalle (1986) among others12. The negative

EVOI seems to imply that a decision maker is better-off without new informa-

tion and must consequently reject costless learning.

Let us first define the expected value of information in general terms. It is

the difference between the expected maximum welfare under learning and the

maximum welfare without learning:

EV OI = Em[W (l)(E∗0 , E
∗
m, pm(θ))]−W (nl)(E∗, p(θ)). (20)

12They refer to to it as a “dilemma” of information in “chance-constrained programming”
which is their term to denote expected utility maximization subject to a probabilistic con-
straint.
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Here, W (l)(E∗0 , E
∗
m, p(θ)) denotes the expectation of the maximum welfare ob-

tained with learning over n learning scenarios m ∈ {1, ..., n}. It depends on the

optimal emission plan (E∗0 ,E
∗
1), i.e. the emission pathway before learning E∗0

and the vector of optimal emission pathways after learning E∗1 = (E∗1 , ..., E
∗
n)

conditional on the probability distributions p1(θ), ..., pn(θ). Correspondingly,

W (nl)(E∗, p(θ)) represents the maximum welfare obtained without learning for

the optimal emission pathway E∗ under the probability distribution p(θ). The

welfare refers to the objective function to be maximized. Hence, for CEA the

welfare is given by WCEA = −C(E), while for CRA it is WCRA = −[C(E) +

βRDY (E, p(θ))].

We will analyze the problem of a negative EVOI in CEA in three steps. First,

based on a simple example, we will illustrate why it is possible that CEA ex-

hibits a negative EVOI and draw the link to the violation of the independence

axiom. Second, we will discuss in general whether dropping this axiom can be

defended in the case of the climate problem by relaxing other, hitherto implicit,

consistency principles. Third, we will point to three factors that constitute the

EVOI of CEA in the full climate problem and show why it can generally be

positive or negative.

3.2.1 Information Aversion

The problem of negative EVOI in CEA can be understood by analyzing the

option space of emission plans admissible under the CEA risk constraint. The

sign of the EVOI depends on how the risk constraint restrains this admissible

option space with and without learning respectively. If the option space is not

restricted due to learning, the optimal emission pathway for no learning E∗ can

still be chosen in every learning scenario. Now, as there is no uncertainty in the

mitigation cost function, i.e. the objective function of CEA, this will still give

the same amount of maximum (expected) welfare. The EVOI is at least zero.

There are two effects on the admissible option space comparing learning to no

learning in CEA. First, learning always adds options to the option space since

the decision maker can adapt her choice in the light of new information. This

we will refer to as the enlarging effect of learning. If the enlarging effect adds

an option with a higher expected welfare than in the no-learning optimum, the

EVOI is strictly positive. However, as we will show, the specific way of extend-
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ing the risk constraint in CEA under learning induces a second restrictive effect

on the admissible option space. In fact, CEA exhibits a negative EVOI if and

only if this restrictive effect dominates the enlarging effect, i.e. if the optimal

choice without learning is not available anymore with learning and no at least

equally good option is added.
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Figure 3: Illustration of how a negative EVOI emerges in CEA: A decision maker
with CEA preferences as in (15) with respect to the risk guard rail Rg = 50% can
choose at A whether or not to learn about climate sensitivity before deciding on low
emissions (El) or high emissions (Eh). The information aversion, i.e. preferring not
to learn, arises since the decision maker satisfies the risk constraint by choosing Eh

for no learning, while under learning the posterior constraint requires her to choose
El at H. The restrictive effect of the posterior risk constraint eliminates the
cost-minimal option 1/2L2 + 1/2L4 (brackets), which is available to the decision
maker only without learning.

First, let us understand how a negative EVOI can occur in CEA using the guid-

ing model from section 2.1. In the decision problem of Figure 3 inspired by

Wakker (1988), we may choose between learning and no learning. Choosing to

learn, we face the very situation known from Figure 2. We will first receive

the information whether climate sensitivity is “low” (L) or “high” (H) and can
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subsequently decide for low emissions (El) or high emissions (Eh). As before,

this will give us one of the climate lotteries L1, ..., L4. Now, each of them is

associated with a specific exceedance probability: Rex(L1) = 30%, Rex(L2) =

40%, Rex(L3) = 50%, Rex(L4) = 60%. The mitigation cost decrease with emis-

sions such that C(L1) = C(L3) > C(L2) = C(L4). Finally, the likelihood of

obtaining either L or H is 50%. Without learning, we face the same situation

only that we decide on emissions first, while the state of the world, either L or

H, is revealed afterwards.

Now, imagine we apply CEA at node A in Figure 3 with respect to the risk

guard rail Rg = 50%. Remember that in the framework introduced in section

2.1 emission plans, i.e. sets of emission pathways conditional on the learning

scenario, correspond to compound climate lotteries. From the viewpoint of A,

the choice of both branches, learning and no learning, can be characterized by

a different set of compound lotteries on L1, ...., L4. The decision at A can be

determined by comparing these two option spaces for learning and no learning.

Let us find the enlarging and the restrictive effect on the admissible option

space in this simple example. In the no learning case, we have the choice be-

tween 1/2L1 + 1/2L3 and 1/2L2 + 1/2L4. First of all, with learning our option

space is enlarged as we may pick the compound lottery 1/2L2 + 1/2L3 which

is not available without learning. The enlarging effect is because we can make

the choice about El or Eh conditional on whether we find ourselves at L or

at H. Formally, no learning is the special case of learning where only emission

plans with the same emission pathway for every learning scenario can be chosen.

However, there is also a restrictive effect from learning since the risk constraint

in CEA is imposed posterior. This means that in each of the learning scenarios

L and H respectively the exceedance risk must not be higher than 50%. Conse-

quently, with learning the option of high emissions Eh at H has been removed

(dotted line) and the scenario L4 cannot occur anymore. The compound lottery

1/2L2 + 1/2L4 available for no learning cannot be chosen with learning. This is

because the posterior risk constraint (limiting the risk in each learning scenario)

is strictly stronger than a prior risk constraint (limiting the expected risk over

all learning scenarios).

Finally, our example is chosen such that the restrictive effect of the constraint
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dominates the enlarging effect of learning. Applying CEA, the decision maker

chooses the least mitigation cost from a constrained option space. The point

is that the compound lottery 1/2L2 + 1/2L4 which incurs the least mitiga-

tion cost C(El) is only available without learning. With learning, the opti-

mal choice would be 1/2L2 + 1/2L3, which gives the expected mitigation cost

1/2(C(El) + C(Eh)) > C(El). Hence, the EVOI is negative and the decision

maker is better-off by choosing the lower branch (no learning) at A. Conse-

quently, she should reject costless learning about climate sensitivity. This is

what Wakker (1988) referred to as information aversion.

On the level of preferences, we may say that the information aversion in Figure 3

is due to the violation of the independence axiom by CEA preferences as defined

and discussed in section 2.3. The problem is that atH the decision is determined

by L3 � L4, while at B it is based on 1/2L3 + 1/2L2 ≺ 1/2L4 + 1/2L2. The

first preference follows from the primary guard rail criterion as R(L3) = Rg <

R(L4). The second preference follows from comparing the compound lotteries

by reduction which gives R(1/2L4 + 1/2L2) = Rg and C(1/2L4 + 1/2L2) <

C(1/2L3 + (1− 1/2)L2). Prior to learning, the high risk of L4 can be balanced

by the low risk of L2. Yet, after learning this is not possible anymore since the

uncertainty about L or H has been resolved.

3.2.2 Implications of Non-Independence

We have seen how the information aversion is linked to the violation of the

independence axiom. Now, we will discuss the implications of dropping this

axiom more generally. Violating independence implies violating at least one of

three consistency principles of dynamic choice which have been implicit to our

above argument. This will also allow us to see whether the EVOI problem of

CEA could be fixed by relaxing these requirements using other non-independent

decision criteria.

The point is that identifying the plans made at node A in Figure 3 as com-

pound lotteries presupposes two consistency principles: time-consistency and

consequentialism. So far, we have always silently accepted them by referring

to anticipated choices after learning as compound lotteries for which we could

then check independence using the axiom of reduction. In the following, we will

discuss the principles by explaining the argument made by Wakker (1999) for
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defending the necessity of the independence axiom against the background of

the climate problem.

The argument is illustrated in Figure 4. Each of the depicted conditions requires

that the decision maker chooses the upper branch at the decision node (square)

in one situation if and only if she chooses the upper branch at the decision node

in the other situation. Hence, if independence is violated at least one of the other

three conditions must be violated, too. The equivalence between the decision

problem in (1) and (4) in Figure 413. The necessity of the axiom can be defended

by arguing that each of the other three consistency principles should be satisfied.

Figure 4: Relation between independence, consequentialism, time-consistency and
context independence following Wakker (1999). Each consistency condition implies
that the decision maker chooses the upper branch at the squared decision node in
one situation if and only if she chooses the upper branch in the other situation, too.

First, let us consider consequentialism (Wakker (1999) calls it ‘foregone-event

independence’). It implies that the decision at some node should not depend

13Often the independence axiom is understood in a broader sense to denote the four princi-
ples together. Then, consequentialism or time-consistency are considered as reasons to accept
or reject the axiom in some decision context (e.g. Wakker, 1988; Bradley and Stefansson,
2016). All four principles are necessary for expected utility theory.
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on what could have happened in the past but eventually did not occur. Hence,

the same choice must be made between “up” or “down” in (2) and (1). Second,

time consistency requires that the decision maker can correctly anticipate her

choice beforehand. The best decision should not depend on the point in time at

which the decision maker thinks about it. This implies deciding in (2) as in (3).

Third, holding (3) there should be no objection to frame this time-consistent

plan about a future decision as a prior decision, i.e. a choice on two compound

lotteries as in (4). Finally, making the same choice (“up” or “down”) on the

simple lotteries in (1) as on the compound lotteries in (4) is the exact form of

independence axiom as introduced in section 2.2.

For each condition, there have been suggestions for relaxing it as to allow

for non-expected utility models (see references in Wakker, 1999). First, time-

inconsistency would imply that our plans before learning may deviate from the

actual decision made after learning. We would choose the upper branch at A

in Figure 3 only because we do not see it coming that at H we will not be able

to choose Eh. Such reasoning would make the entire consideration of learning

pointless. Time-consistency is indispensable.

Second, discarding context-independence must argue that a negative EVOI is

actually acceptable. Note that the learning and the no learning branch in Figure

3 correspond to the situations (3) and (4) in Figure 4 respectively. Rejecting

costless learning is a violation of context-independence. To defend it, one would

need to argue that there is a relevant difference between a time-consistent plan

about a future decision and a prior decision. Apart from that the actual decision

is made at a different stage, the decision maker faces the same situation in (3)

as in (4). It is hard to see any difference here.

As Schmidt et al. (2009) point out, for a problem where the risk is induced

by someone who does not necessarily bear the risk, a negative EVOI can be

plausible. They give the example of risk thresholds in nuclear power plants

imposed by a regulating government. Here, acquiring more information about

what may cause an accident can make the company worse-off, while the society

can only benefit. The company will obviously ignore such new information until

being forced to acknowledge it by updated government regulation. However, the

benevolent social planer of the climate problem induces and bears the risk at the

same time. Dropping this principle and accepting a negative EVOI would imply
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to ignore new information. Here, holding deliberately counterfactual beliefs is

deeply troubling.

Finally, we are left with the principle that Schmidt et al. (2009) and Gollier

(2001, p. 12) call ‘consequentialism’. In the example of Figure 3, dropping

consequentialism would allow to make the choice on L1 or L2 at L dependent

on situations that could have been obtained at earlier stages of the decision tree.

For example, replacing the posterior risk constraint by a prior risk constraint

would give us a non-consequentialist criterion. It would imply that the decision

maker minimizes mitigation cost subject to a maximum limit of the risk induced

before learning. We may refer to this as ‘Prior-CEA’ (as opposed to the standard

‘Posterior-CEA’) given by

Min(E0,E) Em[C(E0, Em)]

s.t. Em[Rex(E0, Em|pm(θ))] ≤ Rg
(21)

Prior-CEA cannot have a negative EVOI because there is no restrictive effect

on the option space anymore (Lavalle, 1986). By choosing the optimal emission

pathway without learning E∗ in every learning scenario the constraint is met:

n∑
m=1

πm

∫
pm(θ)Θ[T (E0, Em, θ)− Tg]dθ =

∫
p(θ)Θ[T (E∗, θ)− Tg]dθ ≤ Rg

(22)

Any option available without learning is still available under learning.

Figure 5 summarizes our considerations about admissible option spaces in CEA

with and without learning. First of all, learning always enlarges the option

space. For an unconstrained cost minimization, any option without learning

(light blue) is still available with learning (white). Imposing the risk constraint

removes options. Yet, unlike for Prior-CEA (light red) the option space of

Posterior-CEA (orange) does not contain the option space of CEA without

learning (dark blue). Hence, the optimal choice without learning may not be

available anymore under a posterior risk constraint and the EVOI can become

negative.
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Figure 5: Venn diagramm for illustrating different option spaces of emission plans
available for cost minimization in CEA. Generally, learning always enlarges the
option space as it allows to adjust emissions in the respective learning scenarios.
However, unlike for Prior-CEA (light red) the option space of Posterior-CEA
(orange) does not contain the option space of CEA without learning (dark blue).

However, Prior-CEA is a problematic decision criterion, too. As Schmidt et al.

(2009) point out, this violation of consequentialism is clearly unsatisfactory.

Let us illustrate the problem in Figure 3. After learning H the decision maker

would be allowed to choose L4 by arguing that she would have chosen L1 if L
had occurred. This would have given her a probability of 50% prior to learn-

ing. Such argument can justify any high level of emissions after learning only by

claiming that this risk was balanced by scenarios which eventually did not occur.

So far, we have not touched upon the question why using a non-consequentialist

criterion for the climate problem should be desirable in the first place. In a

different context, it has been repeatedly argued to drop consequentialism for ac-

knowledging the Allais Preferences (Loomes and Sugden, 1982; Machina, 1989;

Bradley and Stefansson, 2016). They go back to a famous counterexample to

the independence axiom given by Allais (1953). Here, non-consequentialism

may be justified by anticipated regret.

Let us briefly explain the Allais Paradox with an example. Kahneman and

Tversky (1979) were the first to conduct behavioral experiments on the phe-

nomenon. They repeatedly observed the following preferences: A 20% chance

to win 4,000$ is preferred over a 25% chance to win 3,000$. Yet, at the same

time a 80% chance to win 4,000$ is exchanged for a sure gain of 3,000$. This
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is a violation of independence since the former choice is obtained by receiving

the latter choice with a chance of one quarter. When explaining their results,

Kahneman and Tversky (1979) referred to this as the “certainty effect”. There

is a qualitative difference between a certain and a uncertain option because the

decision maker might anticipate her regret of winning nothing when she could

have won something for sure. Taking into account what could have happened

if the safe option had been chosen may make the loss even worse. This can be

considered in decision theory by dropping consequentialism and making deci-

sions path-dependent (e.g. Loomes and Sugden, 1982; Machina, 1989).

However, as the climate problem does not feature choices between certain and

uncertain options, it is hard to see how there can be anticipated regret. For

partial learning all options still have uncertain consequences. It would need to

be argued, for instance, that we should be even more prudent about climate

risks in a good learning scenario because we know we could have ended up in

a bad learning scenario. Yet, this would make future decision dependent on a

quite arbitrary outdated state of knowledge. Consequentialism, it seems, is not

dispensable either.

After all, violating the independence axiom has undesirable implications. Re-

laxing one of the other three consistency principles, time-consistency, context-

independence or consequentialism, is no attractive alternative to solve the EVOI

problem.

3.2.3 The Sign of the EVOI

Obviously, the simple example in Figure 3 does not reflect the decision prob-

lem tackled by IAMs. It was supposed to illustrate how the restrictive effect

arises. In the full climate problem, there are infinitely many options and dif-

ferent combinations of parameters and distributions are possible. Here, the

restrictive effect may not always dominate the enlarging effect. Schmidt et al.

(2009) obtain a negative EVOI for most but not all parameter combinations in

their analysis with MIND. In the following, we will show how this mixed result

can be explained by the superimposition of two effects: the convexity of the

mitigation cost function and the asymmetry of learning.
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Again, let us illustrate the two effects using a simplified example. It was de-

veloped by Schmidt et al. (2011). Here, we consider decisions on emissions

E ∈ R≥0 instead of emission pathways. Cumulative emissions since preindus-

trial times are a good approximation of the maximum temperature reached over

time (Allen et al., 2009). We assume Tmax = aθE with the climate sensitivity θ

and constant conversion factor a. Moreover, the mitigation cost function C(E)

is decreasing and refers to the cost-minimal emission distribution over time. We

consider perfect learning of three equally likely states of the world in which cli-

mate sensitivity is either θ1,θ2 or θ3, where θ1 > θ2 > θ3. Finally, we suppose

the decision maker applies CEA and aims at a minimum probability of 50% to

meet the 2◦C target.

Figure 6: Illustration of the cost convexity and the asymmetry effect that affect the
EVOI in CEA: There are three scenarios of perfect learning in which the 2◦C level
can be met by emissions E1, E2 and E3 respectively, where E1 < E2 < E3. The
EVOI refers to the difference in (expected) welfare, i.e. negative mitigation cost,
with and without learning. The EVOI decreases the more convex the mitigation cost
function C(E) is (left). The EVOI increases the more emissions are allowed in the
“good” scenario relative to the emissions reduced in the “bad” scenario (right).

Let us compare the expected mitigation cost with perfect learning to the mitiga-

tion cost without learning in this simplified decision problem. We assume that

in both cases compliance is possible and CEA is feasible. Under learning, the

decision maker chooses optimal emissions E1, E2 and E3 to meet the 2◦C tar-
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get in the learning scenarios θ1, θ2 and θ3 respectively. Since climate sensitivity

is decreasing, cost-minimal emissions have to increase: E1 < E2 < E3. Now,

without learning the decision maker could choose E2 because this gives her an

exceedance probability of 33% and is the cost-minimal choice for obtaining a

probability not higher than 50%. Hence, the EVOI is

EV OI = C(E2)− 1

3
[C(E1) + C(E2) + C(E3)]. (23)

Whether the EVOI in (23) is positive or negative depends on two factors: The

distance between E1, E2 and E3 and the convexity of the mitigation cost func-

tion C(E). Figure 6 illustrates how both effects may counteract each other.

The left panel shows that the EVOI is reduced the more convex the mitigation

cost function is. The right panel shows that this effect is counteracted if the

amount of emission gained in the “good scenario” (E3 − E2) exceeds the re-

quired reduction in the “bad scenario” (E2 − E1). This second effect depends

on the symmetry of the learning scenarios, i.e. on the differences between θ1,

θ2 and θ3. If (θ1 − θ2) = (θ2 − θ3), the effect increases the EVOI as depicted in

Figure 6b since E(θ) = Tg/(aθ) is a convex function. More emissions are gained

in the “good scenario” (E3) than are lost in the “bad scenario” (E1). Hence,

the EVOI as in (23) is only negative for a sufficiently convex mitigation cost

function which outweighs the asymmetry effect.

Considering the full climate problem, it is theoretically not clear how the su-

perimposition of these two effects plays out for the sign of the EVOI. In the

more general case of partial learning, the second effect mainly depends on the

skewness of the posterior distributions. The mitigation cost function implicit in

an IAM is certainly convex, yet the asymmetric learning effect may outweigh it.

Moreover, both effects obtain different weight if the learning scenarios do not

occur with equal likelihoods.

Additionally, the expected value of anticipation (EVOA) is always negative in

CEA. The EVOA is the component of the EVOI due to the adjustment of de-

cisions before learning relative to the situation of no learning (Lorenz et al.,

2012). With learning, the decision maker may also want to alter first-period

emissions as she anticipates the learning event. However, the EVOA in CEA is

always negative because the posterior risk constraint requires the climate target
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to be met in all learning scenarios. It implies that first-period emissions are

completely determined by the worst-case learning scenario. Not only is this an

extremely risk-averse behavior, the negative EVOA suggests that the decision

maker would be better-off by ignoring the fact that she will learn until she even-

tually learns. The negative EVOA by itself is a normatively unappealing feature

of CEA.

To conclude, we have seen that CEA may give a negative EVOI and even become

infeasible as the set of emission plans which comply with the target changes de-

pending on what is learned. In general, violating independence as implied by

probabilistic constraints has normatively unappealing implications under learn-

ing. This motivates using a target-based expected utility criterion as CRA which

will be presented in the following chapter.

* * *

This section pointed to the problems of CEA under learning. First, CEA can

become infeasible if “too much” is learned. Here, the probabilistic climate target

cannot be met in all learning scenarios due to past emissions. Second, CEA can

exhibit a negative expected value of information. This implies that the decision

maker would be better-off if she did not learn in the first place. The EVOI

problem arises due to the violation of the independence axiom. As long as a

probabilistic constraint is imposed, the problem can only be evaded by dropping

other desirable consistency principles. Whether the actual EVOI is positive or

negative in CEA depends on the superimposition of two effects: the convexity

of the mitigation cost function and the asymmetry of learning scenarios. The

infeasibility as well as the EVOI problem conceptually originate in the fact that

the set of emission plans the constraint allows for changes depending on what is

learned. Hence, alternative criteria are needed to formulate strong sustainability

under uncertainty and learning in a self-consistent way.
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4 Understanding CRA: A Target-based Expected

Utility Criterion

CRA has been developed by Schmidt et al. (2009) as a target-based expected

utility criterion to overcome the indicated problems of CEA. This chapter aims

at understanding CRA and its properties in more detail. First, section 4.1

introduces the objective function of CRA and explains its calibration to a prob-

abilistic climate target. Second, we show that as an expected utility criterion

CRA overcomes the EVOI problem of CEA (section 4.2). Third, we discuss

the trade-off criticism brought forward against CRA (section 4.3). Fourth, we

address the question under which conditions CRA can be seen as an adequate

formalization of strong sustainability (section 4.4).

4.1 Objective Function and Calibration of CRA

When dealing with the climate problem under uncertainty in the target-based

normative framing, two values are at stake: climate-induced risk R(E, p(θ)) and

mitigation cost C(E). A target-based expected utility criterion needs an objec-

tive function to be maximized that relates these to values to each other. This

function W (C,R) should obviously decrease in both mitigation cost and climate

risk.

Now, as Schmidt et al. (2009) note, the scope of possible functional forms for

an expected utility criterion is very restricted. This is because climate risk

itself is an expected value. Most generally, we can write it as R(E, p(θ)) =

Eθ|p(θ)[X(E, θ)] with some non-decreasing exceedance function X(E, θ). To

comply with expected utility theory, the objective function must be linear in

the probabilities and hence W (C,R) must be linear in climate risk. The only

linear form which aims to reduce both mitigation cost and climate risk, is the

additive approach W = −(C(E) + βR(E)) employed by CRA.14.

The delicate issue in CRA is the trade-off parameter β. It can be interpreted as

the willingness to pay for reducing the climate risk by one unit. If climate risk

is exceedance probability Rex as given in (4), then β/100 is the welfare loss in-

curred by an 1% increase in the probability to transgress the temperature guard

14The other linear form would be the multiplicative approach W = −C(E)R(E, p(θ)).
However, it would imply that zero cost are optimal which corresponds to a BAU-scenario.
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rail. Likewise, it may be interpreted as the shadow price of the risk constraint

of a CEA without learning. However, CRA as defined in (6) uses expected de-

gree years, a risk measure which is based on the magnitude and the duration

of potential target overshoots. Here, β can be interpreted as the willingness to

pay for reducing the expected overshoot of the temperature guard rail by one

degree year.

Now, the crucial question is how to set this normative trade-off parameter. Neu-

bersch et al. (2014) refer the parameter to a probabilistic climate target with

respect to the current state of knowledge, i.e. a prior distribution. Their CRA

is calibrated such that without learning the optimum provides a 66% chance to

meet the 2◦C target. As mentioned in section 1.4, this target represents their

interpretation of the agreement made at the 17th Conference of the Parties in

2009. Applying CRA, the decision maker attaches the same value to risk re-

duction in terms of mitigation cost as if she wanted to reach this probabilistic

climate target cost-effectively under prior knowledge.

It can be asked whether a repeated calibration of CRA is time-inconsistent in

case that the target is politically reconfirmed, while real-world decisions deviate

from the optimal pathway. However, as soon as the actual pathway differs from

the optimum, circumstances have changed and time-consistency is unaffected.

Hence, nothing impedes to recalibrate CRA under the impression of the latest

climate policy agreement.

There are various ways to modify CRA by using different risk measures. Neu-

bersch et al. (2014) and Roth et al. (2015) test more stringent risk functions, too,

which penalize overshoots with higher order terms of temperature exceedance.

Their numerical results show that this enhances environmental stringency but

does not change the picture qualitatively: The higher the penalty on target

overshoots, the smaller the optimal overshoot will be. The (linear) measure

of degree years is, as Neubersch et al. (2014) show, the least environmentally

stringent form to avoid the problem of BAU-solutions indicated in section 1.5.

Concerns about whether the criterion attaches too large or too small value to

avoiding target overshoots can be met by adjusting the risk function. This

generally grants CRA much flexibility.
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4.2 The EVOI in Expected Utility Theory

CRA overcomes the problems of CEA discussed in chapter 3. First, as an un-

constrained optimization it is always feasible. Second, it is consistent with the

idea of a probabilistic climate target as CRA actually allows for overshoots of

the temperature guard rail under certain circumstances. It references the target

to a specific state of knowledge and not to any state of knowledge as CEA does.

Third, as an expected utility criterion the EVOI of CRA is always non-negative.

Let us present this final point in more detail.

Previously, we have seen that CEA can have a negative EVOI due to its viola-

tion of the independence axiom. As an expected utility criterion, CRA cannot

have a negative EVOI. Here, we sketch the general argument following Gollier

(2001, pp. 357) for a finite number of states of the world. As we will see, the

independence axiom ensures that any expected utility criterion exhibits a non-

negative EVOI.

Let us consider an expected utility maximization on a finite space of options

given by

Maxc W (c,p) = Es[U(c, si)] =

n∑
i=1

piU(c, si). (24)

Here, U(c, si) is the outcome utility gained for option c if state of the world si

occurs. The knowledge of the decision maker is represented by the probability

vector p = (p1, ..., pn) for n possible states of the world. The probability vector

satisfies
∑n
i=1 pi = 1. The total welfare W (c,p) is the expected utility over all

states of the world.

Now, learning is modeled by compound lotteries as introduced in chapter 2.1.

The decision maker anticipates that in the future she will either obtain the

knowledge p or the knowledge p′. The first learning scenario occurs with a

likelihood of q, while the second occurs with a likelihood of (1 − q). Hence,

according to Bayes’ Law her prior knowledge is qp + (1− q)p′.

We now consider maximum welfare as a function of the probability vector, i.e.

W ∗(p) := Maxc W (c,p). The key idea is to see that W ∗(p) is a convex function
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Figure 7: Illustration of the convexity of maximum expected utility for one
dimension pi of the probability vector p. Since the expected utility functions
W (pi, c1),W (pi, c2) and W (pi, c3) for the options c1, c2 and c3 (black lines) are
linear in pi, the function W ∗(pi) := Maxc W (pi, c) is convex (red line).

as long as W (c,p) is linear in p. This is illustrated in Figure 7 for one dimen-

sion pi of the probability vector p. It shows the welfare obtained for options c1,

c2 or c3 depending on the probability pi. Since the expected utility functions

W (pi, c1),W (pi, c2) and W (pi, c3) are linear in pi (black lines), the function

W ∗(p) is convex (red line). This is because for increasing pi the maximum wel-

fare follows the expected utility function with the larger slope at intersection

points.

Finally, as W ∗(p) is convex, it follows for any two probability vectors p and p′

obtained by the likelihoods q and (1− q):

qW ∗(p) + (1− q)W ∗(p′) ≥W ∗(qp + (1− q)p′). (25)

The left hand-side is the expectation over the respective maximum welfare

gained in the learning scenarios p and p′. The right hand-side is the maximum

welfare obtained with the prior knowledge. The first is the expected utility for

learning, while the second is the expected utility for no learning. The difference

between the two is the EVOI. Hence, the linearity in probability required by

the independence axiom ensures that the EVOI is never negative in expected

utility maximization.
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4.3 The Trade-Off Criticism

CRA has been criticized for its trade-off structure between mitigation cost and

climate risk (Hermann Held, personal communication). The criterion, it is ar-

gued, is not in the sense of strong sustainability since it does not attach first

priority to keeping a “safe minimum standard” of climate change (section 1.3).

CRA treats both values, mitigation cost and climate risk, interchangeably. As

indicated, the position of the WBGU (2014) asserts that transgressing the guard

rail leads to “intolerable consequences that even large-scale benefits in other ar-

eas could not compensate” (p. 11). This would, the argument goes, require a

lexicographic decision criterion such as CEA under uncertainty and learning,

too.

The problem raised is qualitatively different from the consistency problems of

CEA. CRA is not inconsistent, but inadequate to represent this presupposed

normative framing. Discussing such objection has a different character. Al-

though consistency conditions such as the von Neumann-Morgenstern axioms

require normative justification, too, they have a formal definition. Yet, strong

sustainability is not a clear-cut term as section 1.3 pointed out. At this point,

we need to carefully differentiate between different possible understandings of

strong sustainability.

Suppose we accept the CRA trade-off criticism and require that the principle

of non-substitutability applies to probabilistic measures of climate-related and

economic values as well. Let us try to find an adequate decision criterion for

this position. We can then discuss to what extend the implications of such crite-

rion are in the general sense of strong sustainability as introduced in section 1.3.

For obtaining a decision criterion in this presupposed sense of strong sustain-

ability, the continuity axiom would need to be dropped. As section 2.2 showed,

assuming completeness and transitivity, continuity is sufficient for the existence

of a utility representation. As long as both climate risk and mitigation cost mat-

ter, the utility function will feature some trade-off between both values. Hence,

CRA is not an adequate decision criterion to formalize strong sustainability

under learning. CEA is lexicographic, yet it features the consistency problems
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discussed in chapter 3. They do not occur if we require the completeness and

the independence axiom. Hence, it makes sense to look for alternative criteria

which satisfy all von Neumann-Morgenstern axioms except for continuity.

As Schmidt et al. (2009) point out, such axiomatic basis is provided by lex-

icographic expected utility theory as in e.g. Blume et al. (1991). Here, the

continuity axiom is replaced by a weaker axiom while the other axioms of ex-

pected utility theory remain unaffected. Hence, it is a more general framework.

Applied to the climate problem under learning, lexicographic expected utility

theory contains decision criteria of the following form:

lex. Max(E0,E)

{Em Eθ|pm(θ) [U1(E0, Em, θ)], ... ,Em Eθ|pm(θ) [Uk(E0, Em, θ)]}.
(26)

Here, the expression lex. Maxx{V1(x), V2(x), ..., Vk(x)} denotes a lexicographic

maximization: First V1 is maximized, if multiple x give the maximum of V1,

then V2 is maximized and so on. As usual, E0 denotes the emission pathway

before learning and E = (E1, ..., En) the vector of emission pathways of learn-

ing scenarios {1, ..., n}. Moreover, Em and Eθ|pm(θ) are the expectation over the

learning scenarios and the expectation over climate sensitivity θ with respect to

the probability distribution pm(θ). The U1(E0, Em, θ), ....Uk(E0, Em, θ) are k

utility functions on emissions before and after learning (E0, Em) under climate

sensitivity θ in descending lexicographic order of importance.

Now, the question arises how to specify the U1(E0, Em, θ), ....Uk(E0, Em, θ) in

order to obtain a criterion in the above sense of strong sustainability. This

strong sustainability would require U1 to only represent climate-related value

with respect to a potential overshoot of the guard rail Tg. For this we define a

general exceedance function based on the notation of section 1.5 as

X(E0, Em, θ) :=∫
[Θ[T (t)(E0, Em, θ)− Tg]x(T (t)(E0, Em, θ))]e

−ρtdt,
(27)

where x(T (t)) is some non-decreasing function of the temperature trajectory

T (t). We formalize strong sustainability by setting U1 := X(E0, Em, θ). Hence,
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V1(E0,E) := EmEθ|pm(θ) [U1(E0, Em, θ)] is the most general form of a risk func-

tion as we understand it. For instance, if x is a constant, then V1 is exceedance

probability. If x(T ) is linear, then V1 is expected degree years and so on. The

problem is that lexicographic expected utility theory would only be helpful if the

primary utility function U1 could be chosen such that V1(E0,E) had multiple

optima.

However, the combination of two features specific to the climate problem make

this impossible. First, temperature T (E0, Em, θ) is strictly increasing in both

emissions as well as climate sensitivity and has no upper bound (I). Second, it

is most likely that future learning will not be able to give an upper bound to

climate sensitivity either. Hence, we can assume that the posterior distributions

have infinite support (II), i.e. ∀m ∈ {1, ..., n}, θ > 0 : pm(θ) > 0.

Now, as past emissions have already occurred, (I) implies that any amount of

temperature rise may be observed with arbitrarily high climate sensitivity. So

(II) implies that the primary expected utility function can never be zero, i.e.

for all emission plans (E0,E) we have V1(E0,E) > 0. Finally, (I) implies that

maximum mitigation, i.e. zero emissions for all times and learning scenarios, is

optimal due to the primary criterion in (26) and no secondary criterion would

make any difference. Hence, the only way of meeting the CRA trade-off crit-

icism would be by minimizing a measure of climate risk without considering

mitigation cost at all.

Let us rephrase the argument in a less formalistic manner: The trade-off crit-

icism imposes the requirement of non-substitutability by strong sustainability

also on probabilistic quantities. Now, if reducing mitgiation cost is always subor-

dinated to reducing the chance of a possible temperature overshoot even by the

smallest amount and, moreover, limited knowledge does not allow to exclude

arbitrarily high values of climate sensitivity, maximum mitigation is optimal.

Decreasing emissions will always decrease climate risk, which will never be zero.

Hence, accepting the trade-off criticism against CRA implies that mitigation

cost are irrelevant. A proponent of strong sustainability, who sincerely argues

to extend the idea of non-substitutability also to probabilistic quantities, must

support an immediate shutdown of the economy for climate reasons.
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This position may be consistent, but it is at odds with a certain aspect of cli-

mate targets presented in section 1.3. Always prioritizing mitigation because

of a non-zero probability to transgress the 2◦C target obviously induces “exces-

sive cost”, a consequence that already the WBGU (1995) rejected. As section

1.3 pointed out, the discourse around the target-based normative framing has

always had both sides in mind: A (probabilistic) climate target is supposed to

avert high climate risk at reasonable cost. CRA can be defended against the

trade-off criticism as the objection would imply to ignore mitigation cost com-

pletely.

Finally, let us ask about the motivation behind a lexicographic criterion in

the first place. Requiring non-substitutability also for probabilistic measures

of climate-related and economic value violates the continuity axiom. Section

2.2 pointed out that it is hard to defend specific probabilistic thresholds within

the open interval (0, 1). However, essentially a similar objection can be made

against deterministic CEA: Any pathway reaching 2.2◦C or 2.1◦C is considered

worse than any pathway that stays below the 2◦C level. The numerically exact

threshold level is quite arbitrary which makes the resulting discontinuity some-

what artificial.

This brings us back to the interpretation of the 2◦C target. Jaeger and Jaeger

(2011) provide a comprehensive review of the different arguments made in sup-

port of the 2◦C target. Interestingly, they highlight a pragmatic argument which

is that a number as 2◦C provides a “focal point” and “collective narrative” for

coordinating political action. They compare the function of the target to speed

limits in traffic: There is no particular reason for a limit of 50 instead of 47 or 53

kilometer per hour except that it is easier to communicate. There would be no

significantly lower or higher risk with those limits. It is a smooth transition zone

to unacceptably dangerous traffic. As they emphasize, the focal point argument

hardly provides sufficient reason for a 2◦C target. The general regime of the

target level needs to be determined by climate-related and economic argument.

However, their analogy implies that the exact level is not supposed to be a cut-

off point. Climate risk is not actually non-continuous at 2◦C. Following this

interpretation, the climate problem does not require a lexicographic criterion.
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4.4 The Role of CRA

Finally, let us ask how decision making in CRA can be interpreted. The ques-

tion remains, under which conditions it is an adequate formalization of strong

sustainability. CRA overcomes the infeasibility and the EVOI problem of CEA

by meeting the consistency standard of expected utility theory. We will explain

in which sense a calibrated CRA refers to the concept of a probabilistic climate

target suggested by strong sustainability.

The decision maker of CRA can be characterized as follows: She is an expected

utility maximizer who makes decisions on the climate problem under learning

only on the basis of mitigation cost and climate risk. Here, climate risk is

understood as in section 4.3 by R(E0, Em|pm) := Eθ|pm(θ) [X(T (E0, Em, θ))],

where X is a general exceedance function as defined in (27). Now, it depends

on whether or not strong sustainability can identify with such characterization.

CRA does not have a lexicographic structure with a primary climate criterion.

However, as section 4.3 showed, it is questionable whether this is the point

strong sustainability wishes to make under learning after all.

In general, complying with the von Neumann-Morgestern axioms should not be

regarded as the shrine of rationality. As we have seen, they are mainly moti-

vated by excluding certain normatively unappealing effects under learning such

as those discussed in section 3.2. However, if their occurrence can be ruled out

for other, maybe empirical, reasons or is not considered to be a problem in the

first place, non-expected utility criteria can still be used. For example, CEA

without learning may still be an informative decision criterion in IAM analysis.

Let us shortly recapitulate the implications of accepting the von Neumann-

Morgestern axioms as summarized in Figure 8. Accepting completeness and

transitivity implies the existence of an optimal choice. Without continuity, this

choice may be found by a lexicographic criterion. Accepting continuity in addi-

tion implies to maximize a utility function. As long as independence is not added

to these requirements, utility functions which are non-linear in the probabilities

can be employed (see e.g. Machina, 1989). Finally, also requiring independence

implies using an expected utility criterion which ensures time-consistency, con-

sequentialism and a non-negative EVOI.
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Figure 8: Compliance of CEA and CRA with the von Neumann-Morgenstern
axioms and summary of the axioms’ implications.

Following our discussion of the von-Neumann Morgenstern axioms against the

background of the climate problem, we think that there are good reasons for

applying CRA as a proponent of strong sustainability under learning. Given a

probabilistic climate target, CRA can refer to it under learning using the cali-

bration of Neubersch et al. (2014). Let us extent on this point and explain how

the decisions in CEA without learning are related to a calibrated CRA.

Suppose a proponent of strong sustainability agrees to apply CEA under uncer-

tainty and without learning. For example, she favors a mitigation policy which

gives a probability of 66% for meeting the 2◦C target. Section 3.1 pointed out

that applying CEA with a posterior risk constraint under learning conceptually

misunderstands the probabilistic climate target as it refers it to any possible

state of knowledge. The CRA calibration of Neubersch et al. (2014) implies

that the target is only met under the prior state of knowledge. Hence, the

initial statement of the proponent of strong sustainability, i.e. that a 66% prob-

ability of meeting the 2◦C target is optimal without learning, still holds. Now,

under a different state of knowledge CRA attaches the same value to climate

risk in terms of mitigation cost. It is the value which would make cost-effective

target compliance optimal under the prior distribution.

The crucial step from CEA under uncertainty to CRA with learning is the risk

function. It is required for structuring preferences above the temperature guard
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rail. Different forms can be employed depending on how dangerous an overshoot

of the guard rail temperature is perceived. As a target-based criterion, CRA

is meant to refer not to impact-based damage estimates but to positions and

pledges in the climate policy discourse. Additional to a probabilistic climate

target, CRA thus requires some input about what should be done once the tem-

perature guard rail is transgressed.

The modeling choice of Neubersch et al. (2014) is to use expected degree years

as the risk function. As pointed out in section 1.5, it is the least penalizing

functional form for excluding solutions that suggest to ignore climate change in

“bad learning scenarios”. Without learning, their CRA suggests more emission

reduction in the long run than does CEA. The reason is that the duration of the

overshoot is taken into account and the risk increases the longer the overshoot-

ing temperature trajectories of high climate sensitives stay above the guard rail.

There is an incentive to reduce temperature in these scenarios to the guard rail

level in the long run. When using more convex functional forms than the degree

years, emissions are reduced further such that the solution of CRA for no learn-

ing is even more prudent than in CEA. Hence, without learning the calibrated

CRA always suggests environmentally more stringent decisions than CEA.

Finally, CRA is similar to CBA in its mathematical structure. Yet, the crucial

difference is how economic damage functions and the calibrated risk functions

are constructed. A damage function aggregates economic assessments of specific

climate impacts. Some evaluations are referred to market data, other impacts

need to be based on more indirect assessments (e.g. Nordhaus, 2013, pp. 69-

135). CRA takes a different perspective. Regardless of actual impact estimates,

it analyzes decision on the basis on climate targets. It attempts to relate its

main normative assumptions to certain positions and agreements in climate pol-

icy.

CRA and CBA provide answers to different questions. Both may be informative

for policy makers at different stages of a decision process. One of the advantages

of CRA is that it is based on a few, more explicit normative assumptions. The

criterion requires a risk function and three normative parameters, constituting

the probabilistic climate target: the temperature guard rail Tg, the risk guard

rail Rg and the state of knowledge p(θ) the risk guard rail is supposed to refer

to. This still relatively simple structure makes CRA attractive for informing
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decision makers on the economic implications of climate targets under uncer-

tainty and learning.

* * *

The chapter presented CRA as an expected utility criterion that overcomes the

consistency problems of CEA. CRA is the only way to conduct an unconstrained

expected utility maximization featuring mitigation cost and climate risk. It

works with a normative trade-off parameter β which represents the willingness

to pay for reducing one unit of climate risk. As an expected utility criterion, it

always exhibits a non-negative EVOI. CRA has been criticized for using a trade-

off structure between mitigation cost and climate risk which was not in the sense

of strong sustainability. However, accepting this objection would imply ignoring

mitigation cost completely. CRA characterizes an expected utility maximizer

who decides about the climate problem on the basis of mitigation cost and

climate risk. It is an attractive decision framework to deal with climate targets

in a setting of uncertainty and learning.
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5 Exploring Alternatives: Minimum Risk Anal-

ysis

Two target-based decision criteria have been discussed in the previous chapters.

The first was CEA, a risk-constrained cost minimization. The second was CRA,

a minimization of a weighted sum of cost and risk. This last chapter will present

the remaining alternative: a cost-constrained risk minimization. As before, we

will also ask how decision making based on this criterion can be interpreted.

Section 5.1 will introduce minimum-risk analysis (MRA) and discuss some of

its features. Subsequently, section 5.2 will reflect on the role of MRA in target-

based decision analysis and point to its chances and limitations.

5.1 Introducing a Cost-Constrained Approach

The previous chapters investigated two existing target-based criteria to make

decisions on the climate problem under learning. In the following, we will present

a third criterion which we will refer to as minimum-risk analysis (MRA). Using

the notation introduced in section 1.5, MRA without learning is given by

MinE R(E|p(θ))

s.t. C(E) ≤ Cg.
(28)

Here, the emission pathway with the least climate risk is chosen that does not in-

cur higher mitigation cost than the cost guard rail Cg allows. Now, as discussed

for CEA in section 3.2, there are again two ways to formulate this constraint

under learning. We can either place a cost guard rail on the expected mitigation

cost over all learning scenarios (prior constraint) or on every learning scenario

respectively (posterior constraint). However, similar to Prior-CEA in section

3.2, the former criterion violates consequentialism. Whether a certain choice

is admissible after learning depends on what would have been chosen in other

learning scenarios. This is why we only consider MRA with a posterior cost

constraint under learning. It is given by the optimization

Min(E0,E) Em[R(E0, Em|pm(θ))]

s.t. ∀m : C(E0, Em) ≤ Cg.
(29)
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MRA is structurally similar to CEA only that cost are constrained and risk is

minimized. It violates the von Neumann-Morgenstern axioms (see Appendix

A.2) such that it is no expected utility criterion.

However, the two problems of CEA do not occur. First, MRA is always fea-

sible. Any emission pathway which complies with the cost constraint in (28)

also complies with any of the cost constraints in (29). Learning cannot make

MRA infeasible as there is no restrictive effect on the option space and MRA

without learning is feasible as long as Cg ≥ 0. The BAU-pathway EBAU (t) with

C(EBAU ) = 0 can always be chosen.

Second, since the constraint is not probabilistic and the objective function has

expected utility form, the EVOI of MRA cannot be negative. There is no

restrictive effect on the admissible option space for risk minimization. The

optimal emission pathway without learning can still be chosen in any learning

scenario. This emission plan gives the same risk level as in the no-learning

optimum since the risk function is linear in the probabilities:

∑
m

πm

∫
pm(θ)X(E0, Em, θ)dθ =

∫
p(θ)X(E0, Em, θ)dθ. (30)

Hence, the EVOI in MRA is at least zero. It corresponds to the amount of

climate risk that can be reduced due to learning.

The neglect of any cost minimization raises a conceptual problem of MRA as

soon as we drop the (quite realistic) assumption that the posterior probability

distributions have infinite support. In fact, if a posterior distribution allows to

hold the temperature guard rail with certainty at less than guard rail cost, there

are multiple optima in this learning scenario. The zero risk level can be reached

with more or less admissible mitigation cost. Specifically, this situation occurs

for perfect learning. The problem can be overcome by conducting a lexicographic

expected utility maximization as introduced in section 4.3 to obtain the risk

minimum with the least mitigation cost. This is why we write MRA in its most
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general cost-efficient form as

lex. Min(E0,E) {Em[R(E0, Em|pm(θ))],Em[C(E0, Em)]}

s.t. ∀m : C(E0, Em) ≤ Cg.
(31)

As in (26) the expressions Em[R(E0, Em|pm(θ))] and Em[C(E0, Em)] are mini-

mized in lexicographic order. So, if multiple emission plans (E0,E) give minimal

climate risk, the cost-minimal solution among them is preferred.

MRA in its cost-efficient form always incurs less or equal (expected) mitigation

cost when learning is included. In fact, as argued in section 4.3, if the risk can-

not be zero, the secondary criterion makes no difference. Then, the mitigation

cost without learning correspond to the expected mitigation cost with learning.

The full cost budget is used up in every learning scenario. Yet, if the temper-

ature guard rail can be held with certainty in at least one learning scenario

at lower than guard rail cost, the two criteria differ and cost-efficient MRA in-

curs strictly less (expected) mitigation cost with learning than without learning.

In lexicographic optimization under learning, we face the problem that the EVOI

can only refer either to the primary or the secondary function. Extending the

concept of the EVOI to a lexicographic structure is questionable. For instance,

it could be suggested to refer the EVOI to the risk function, if optimal risk levels

for learning and no learning are different, and to the saved mitigation cost if the

former are equal. However, this would change the interpretation of the EVOI

from reduced climate risk to saved mitigation cost depending on the specific

optimum reached. Yet, if the EVOI refers only to the primary risk function, it

ignores saved mitigation cost from the second criterion. Hence, in the special

case that a cost-efficient MRA is required, it is not clear how to quantify the

benefit gained by new information.

5.2 The Role of MRA

Finally, we discuss how applying MRA under learning can be interpreted. Al-

though MRA is lexicographic, it is hardly in the sense of strong sustainability

since it inverts the order of importance. MRA employs a primary cost criterion

and a secondary risk criterion. It characterizes a decision maker who spends the

same amount of mitigation cost regardless of the learning scenario she receives.
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Yet, MRA may still be an interesting decision criterion, although from a very

different perspective. The criterion shows how much climate change can be

mitigated at maximum with a fix budget of mitigation cost. MRA provides an

answer to the question which temperature rise we would obtain if in any learning

scenario we could only spend the same predefined amount of mitigation cost.

This can be interesting for investigating scenarios of real-world politics where

decision makers effectively face economic budget constraints.

However, there are two problems of MRA due to its structure as a constrained

optimization. First, the EVOI only takes the reduced climate risk into account,

although cost-effective MRA may also reduce the expected mitigation cost un-

der learning. Second, MRA faces the very problem of a negative EVOI as CEA

if there is uncertainty and learning about mitigation cost, i.e. uncertainty in the

economic system. The familiar deficiencies of probabilistic constraints discussed

in section 3.2 reoccur.

The question is whether the uncertainty about mitigation cost is a significant

factor to consider in IAM analysis on the climate problem. Held et al. (2009)

include uncertainty about the fossil resource base and the future learning rates

as well as the floor cost of renewable energy production. Estimates of these

parameters may differ considerably. For instance, the IPCC (2014b, p. 525)

estimates the fossil resource base between 8,500 and 13,600 GtC. This is the

total amount of fossil fuels that can be potentially extracted at economic levels.

Furthermore, estimating the cost development of renewable energy depends on

a number of complex factors such as future technological change and energy

market structures which are inherently difficult to predict (IPCC, 2014b, pp.

538).

Using the model MIND, Held et al. (2009) show that the optimal pathway for

reaching the 2◦C is also sensitive to economic uncertainty, although less than

to uncertainty about climate sensitivity. They find that, if climate sensitivity

is high, the mitigation cost for meeting the 2◦C target vary by up to 1% in

BAU-welfare due to the economic uncertainty. MRA would only be a viable

criterion if these uncertainties can be neglected.

* * *
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In this final chapter, we introduce MRA as a third target-based decision cri-

terion. MRA minimizes climate risk subject to a mitigation cost constraint

imposed on every learning scenario. If the temperature guard rail can be held

with certainty in at least one learning scenario and at admissible cost, a more

general cost-efficient MRA is required. MRA is not an expected utility cri-

terion but evades the two general problems of CEA. It is always feasible and

gives a non-negative EVOI. However, the EVOI takes only the reduced climate

risk into account. MRA is not an adequate criterion for strong sustainability.

Still, it might be informative for investigating the climate scenarios that can be

obtained with a given cost budget.
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Summary and Conclusion

This study tackled the question of how to consistently formalize strong sustain-

ability in an adequate decision criterion for the climate problem under learning.

Chapter 1 pointed out that strong sustainability has originally interpreted cli-

mate targets as maximum acceptable levels of warming. This implies using

lexicographic decision criteria where the primary criterion is to meet the cli-

mate target, while minimizing mitigation cost is secondary. Under uncertainty

probabilistic climate targets can be formulated. They limit the probability of

exceeding some predefined temperature level. Two decision criteria have been

suggested to deal with probabilistic climate targets under learning: CEA and

CRA. CEA finds cost-effective solutions for meeting the target in all learning

scenarios, while CRA minimizes a weighted sum of mitigation cost and climate

risk, where the latter is a measure of the expected temperature overshoot of the

target.

Chapter 2 presented the main tool of the analysis: The von Neumann-Morgenstern

axioms. They are the necessary and sufficient consistency conditions for apply-

ing expected utility theory, the standard framework of decision-making under

uncertainty. While CRA is an expected utility criterion, CEA violates the com-

pleteness, the continuity and the independence axiom.

Chapters 3 and 4 developed the discussion of CEA and CRA against the back-

ground of the von Neumann-Morgenstern axioms. The violation of completeness

and independence by CEA leads to troubling inconsistencies: First, CEA be-

comes infeasible as soon as the target cannot be met in all learning scenarios.

Preferences are not defined over target-overshooting pathways. Moreover, by

referring the target to any possible state of knowledge, CEA is at odds with

the idea of a probabilistic target. Second, violating the independence axiom,

CEA can have a negative expected value of information. This implies that the

decision maker may be better-off without new information. More generally,

non-independent decision criteria must either be time-inconsistent or take into

account counterfactual events to avoid this problem. Dropping this axiom under

learning, we think, is hard to justify.

As an expected utility criterion, CRA overcomes the consistency problems of

CEA. Yet, while CEA still captures the idea of a primary climate criterion,
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CRA is a non-lexicographic criterion. Lexicographic criteria are only obtained

by dropping the continuity axiom. However, insisting on a primary climate

criterion also under learning implies accepting any amount of mitigation cost

as long as the probability density distribution of climate sensitivity has infinite

support. Moreover, regardless of this extreme implication, we find no convinc-

ing argument why the climate problem would require to drop continuity. Not

only is there no perfectly safe option, it is also hard to see why a small over-

shoot of some probability level should be penalized exorbitantly. Our result is

the following: CRA is an adequate formalization of strong sustainability if and

only if this position accepts the von Neumann-Morgenstern axioms and agrees

to represent climate-related concern by a separate expected measure of guard

rail overshoot, i.e. a climate risk function. We think that there are good reasons

for both.

Lastly, chapter 5 briefly presents MRA, a possible third target-based decision

criterion under learning. Here, risk-minimal solutions are found such that mit-

igation cost do not transgress a predefined cost guard rail in any learning sce-

nario. Although MRA is not an expected utility criterion either, it evades the

problems of CEA as long as there is no uncertainty about mitigation cost. More-

over, if the temperature guard rail can be held with certainty in at least one

learning scenario, MRA requires a secondary cost criterion to yield cost-effective

solutions. MRA is hardly in the sense of strong sustainability as it prioritizes

mitigation cost over climate risk. Rather, it can be seen as an analysis of the

minimum climate impact obtainable with a given amount of mitigation effort.

This can be interesting for investigating scenarios of real-world politics where

decision makers effectively face economic budget constraints.

We suggest proponents of strong sustainability to employ CRA for analyzing the

climate problem under learning. However, this framework is only a blueprint

and a couple of normative assumptions need to be clarified in dialog with de-

cision makers. After all, applying CRA requires a specific risk function and a

probabilistic climate target.

Our discussion of the von Neumann-Morgenstern against the background of

the climate problem revealed that applying non-expected utility criteria under

learning comes with concessions to generally desirable consistency principles.

Yet, the normative weight attached to these concessions is certainly debatable.
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For instance, violating the continuity axiom by using lexicographic decision cri-

teria may in many contexts not be particularly troubling. The strength of the

axioms is to exclude certain normatively unappealing effects in decision making.

Yet, if their occurrence can be ruled out for other, maybe empirical, reasons or

is not considered to be a problem in the first place, non-expected utility criteria

can still be used. If learning is not taken into account, for instance, CEA is

still an informative decision criterion for analyzing the economic implications of

climate targets.

Several questions are left for future research: First, CRA has only been applied

to learning about climate-related uncertainty. However, future decision makers

will likely have more knowledge about mitigation cost, too. One source of cur-

rent uncertainty that will be resolved as the renewable energy sector grows in

the future are the floor cost of renewable energies, i.e. the cost once technolo-

gies are mature. CRA could also investigate the climate problem by taking into

account learning about these economic uncertainties.

Second, the relation of CBA and CRA requires further inquiry. Essentially, CRA

replaces the impact-based damage function of CBA by a risk function. The dif-

ference is not so much in the mathematical formalism but in the normative

reference of decision analysis on the climate problem. CBA is based on eco-

nomic impact assessments, while CRA refers to positions and pledges in policy

making. Discussing this difference would require the much broader perspective

of political theory. For example, it may be asked under which conditions deci-

sion analysis can meaningfully infer normative parameters as required in CRA

by reference to policy discourse or stakeholder processes.

Third, MRA still needs to be implemented in an actual IAM. Moreover, a risk

minimization subject to an economic constraint can be done in different ways.

Global time-aggregated mitigation cost may not be the most useful indicator

for the “economic feasibility” of climate policies. Other formulations such as

restrictions on minimum annual growth rates can be thought of. Still, all those

approaches are only promising as long as uncertainty and learning about the

economic implications of emission reductions may be neglected. The idea of

MRA could only be sketched in this study and requires further investigation.
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A Appendix

A.1 Independence and Linear Probabilities

Here, we give the last part of the proof of the von Neumann-Morgenstern The-

orem following Gollier (2001, pp. 7-8). The decision maker has preferences �
over the set of lotteries L. The utility function V (L), L ∈ L, is defined as the

probability for which L ∼ V (L)L+ (1− V (L))L, where L is the most preferred

and L the least preferred lottery.

Using this definition, the independence axiom and the axiom of reduction, we

show that for any β ∈ [0, 1] and L1, L2 ∈ L:

V (βL1 + (1− β)L2) = βV (L1) + (1− β)V (L2). (32)

First, let us rename V1 := V (L1), V2 := V (L2) for notational convenience. The

above notion of a “definition” may be a bit misleading since without indepen-

dence we could not simply “plug in” V1L + (1 − V1)L for L1 in a preference

statement. Both are different but equally valued lotteries. However, we can

mix both lotteries with lottery L2 and conclude by using independence twice

(for both directions � and �):

βL1 + (1− β)L2 ∼ β[V1L+ (1− V1)L] + (1− β)L2. (33)

By the same argument we are allowed to “plug in” the definition of L1. Hence,

the first lottery in (33) must still be valued equally as

β[V1L+ (1− V1)L] + (1− β)[V2L+ (1− V2)L]. (34)

The axiom of reduction allows to move β inside the brackets. Then, by rearrang-

ing (34), we can conclude that the decision maker must be indifferent between

the initial lottery mix βL1 + (1− β)L2 and

[βV1 + (1− β)V2]L+ [1− (βV1 + (1− β)V2)]L. (35)
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The latter is by definition valued by the utility V (βL1+(1−β)L2) which implies

the equivalence stated in (32).

A.2 Compliance of MRA with the von Neumann-Morgenstern

Axioms

As for CEA in section 2.3, we check the compliance of MRA with the von

Neumann-Morgenstern axioms. The argument is similar to the one for CEA

in section 2.3. MRA can be expressed as a lexicographic composition of two

preference relations �1 and �2 over simple climate lotteries L ∈ L. Any cli-

mate lottery induces a climate risk R(L) and incurs mitigation cost C(L). The

primary and the secondary preference relation of MRA are given by

L1 �1 L2 ⇔ {C(L1) ≤ Cg} ∧ {C(L2) > Cg}

L1 ∼1 L2 ⇔ {C(L1) ≤ Cg} ∧ {C(L2) ≤ Cg}

L1 �2 L2 ⇔ R(L1) ≤ R(L2).

(36)

The MRA-preferences � are the lexicographic composition of �1 and �2, i.e.

L1 � L2 ⇔ {L1 �1 L2} ∨ {(L1 ∼1 L2) ∧ (L1 �2 L2)}

L1 ∼ L2 ⇔ {L1 ∼1 L2} ∧ {L1 ∼2 L2}.
(37)

As for CEA, MRA is incomplete and transitive.

To check continuity and independence, we need to define MRA preferences over

compound lotteries. As done for CEA in section 2.3 with risk, we specify the

mitigation cost of a compound lottery by thinking about how MRA would treat

this lottery without learning. In fact, the deterministic constraint in MRA is

the special case of a probabilistic constraint with 100% compliance probability.

MRA seeks to hold mitigation cost below Cg under any circumstance, hence we

define for p ∈ (0, 1)

C(pL1 + (1− p)L3) = Max{C(L1), C(L2)}. (38)
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Continuity would be satisfied if for any L1, L2, L3 ∈ L we had

L3 � L2 � L1 ⇒ ∃p ∈ [0, 1] : pL1 + (1− p)L3 ∼ L2. (39)

However, for L1, L2, L3 ∈ L with C(L2) < C(L3) ≤ Cg < C(L1) and R(L2) >

R(L3) this does not hold. MRA preferences imply L3 � L2 � L1. As soon as

p ∈ (0, 1), the mitigation cost of the compound lottery C(pL1 + (1 − p)L3) =

C(L1) transgress the cost guard rail Cg which implies pL1 + (1 − p)L3 ≺ L2.

Hence, MRA violates continuity.

Independence would require for any L1, L2, L3 and p ∈ [0, 1]:

L1 � L2 ⇔ pL1 + (1− p)L3 � pL2 + (1− p)L3. (40)

The same example as above shows that independence is violated. MRA pref-

erences on the simple lotteries are L3 � L2. However, for any p ∈ (0, 1)

preferences over pL3 + (1 − p)L1 and pL2 + (1 − p)L1 are not defined since

C(pL3 + (1 − p)L1) = C(L1) > Cg and C(pL2 + (1 − p)L1) = C(L1) > Cg.

Hence, MRA violates independence, too.
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keine anderen als die angegebenen Hilfsmittel – insbesondere keine im Quellen-

verzeichnis nicht benannten Internet-Quellen – benutzt habe. Alle Stellen, die
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